Skip to main content

Advertisement

Log in

Porotic hyperostosis, cribra orbitalia, femoralis and humeralis in Medieval NW Spain

  • Original Paper
  • Published:
Archaeological and Anthropological Sciences Aims and scope Submit manuscript

Abstract

Cribra orbitalia and porotic hyperostosis are amongst of the most commonly palaeopathological features recorded in archaeological individuals and are useful to test the general health status in ancient human population, particularly in non-adults (infants, children and adolescents). Despite of the relatively large amount of debate papers about this topic, their aetiology is still under debate and their recording is not standardised. In contrast, postcranial cribrae (femoralis and humeralis) are infrequently addressed. This paper aims to analyse cranial and postcranial porotic lesions, and their relationship with living conditions and dietary patterns, in all available Medieval collections from NW Spain (Pontevedra necropoleis, Adro Vello and Capela do Pilar). Presence/absence, severity, healing grade and co-occurrence of lesions were recorded, and a new photographic scale to determine the severity and healing degrees in postcranial cribrae is advocated as well. Cribra orbitalia (78%) and cribra femoralis (70%) are the most frequent lesions, with porotic hyperostosis (42%) and cribra humeralis less common (38%). Adults display higher grades of severity in cribra orbitalia than non-adults. A healing age pattern was documented in all lesions. No obvious trend/pattern with δ13C and δ15N—used as proxies for diet—was observed. High rates of porotic lesions in NW Spain have been attributed to interactions between several phenomena, as a multifactorial response to a possible dietary influence from high consumption of marine resources and/or infection by fish parasites. Our results highlight the importance of registering postcranial porotic lesions and healing degrees along with diet. In addition, photographic scales are useful to guide and standardise the recording process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Accinelli RA, Leon-Abarca JA (2020) Age and altitude of residence determine anemia prevalence in Peruvian 6 to 35 months old children. PLoS One 15(1):e0226846

    Article  Google Scholar 

  • Alemán Aguilera I (1997) Determinación del sexo en el esqueleto postcraneal. Estudio de una población mediterránea actual. Archivo Español de Morfología, 2

  • Alexander MM, Gutiérrez A, Millard AR, Richards MP, Gerrard CM (2019) Economic and socio-cultural consequences of changing political rule on human and faunal diets in medieval Valencia (c. fifth–fifteenth century AD) as evidenced by stable isotopes. Archaeol Anthropol Sci 11(8):3875–3893. https://doi.org/10.1007/s12520-019-00810-x

    Article  Google Scholar 

  • Amselem S, Nunes V, Vidaud M, Estivill X, Wong C, d’Auriol L, …, Goossens M (1988) Determination of the spectrum of beta-thalassemia genes in Spain by use of dot-blot analysis of amplified beta-globin DNA. Am J Hum Genet 43(1):95

  • Andrade P, Castro V, Aldunate C (2016) Reconstrucción Del Modo De Vida De Individuos Del Arcaico De La Costa Arreica Del Norte De Chile: Una Aproximación Bioarqueológica Desde El Sitio Copaca 1. Chungara: Revista de Antropología Chilena 48(1):73–90. https://doi.org/10.4067/S0717-73562016005000007

  • Angel JL (1964) Osteoporosis: thalassemia? Am J Phys Anthropol 22(3):369–373

    Article  Google Scholar 

  • Angel JL (1978) Porotic hyperostosis in the Eastern Mediterranean. MCV/Q Med Coll Va Q 14(1):10–16

    Google Scholar 

  • Armas Castro JA (1992). Pontevedra en los siglos XII a XV: configuración y desarrollo de una villa marinera en la Galicia medieval. Fundación Pedro Barrié de la Maza

  • Armelagos G, Goodman A, Harper K, Blakey M (2009) Enamel hypoplasia and early mortality: bioarcheological support for the Barker hypothesis. Evol Anthropol Issues News Rev 18(6):261–271. https://doi.org/10.1002/evan.20239

    Article  Google Scholar 

  • Aufderheide AC, Rodríguez-Martín C (1998) The Cambridge encyclopedia of human paleopathology. Cambridge University Press Cambridge, Cambridge

    Google Scholar 

  • Barker DJP (1997) The fetal origins of coronary heart disease. Acta Paediatr 86:78–82. https://doi.org/10.1111/j.1651-2227.1997.tb18351.x

    Article  Google Scholar 

  • Bathurst RR (2005) Archaeological evidence of intestinal parasites from coastal shell middens. J Archaeol Sci 32(1):115–123

    Article  Google Scholar 

  • Brickley M, Ives R (2006) Skeletal manifestations of infantile scurvy. Am J Phys Anthropol 129(2):163–172. https://doi.org/10.1002/ajpa.20265

    Article  Google Scholar 

  • Buckley HR, Tayles N (2003) Skeletal pathology in a prehistoric Pacific Island sample: issues in lesion recording, quantification, and interpretation. Am J Phys Anthropol 122(4):303–324. https://doi.org/10.1002/ajpa.10259

    Article  Google Scholar 

  • Buckley HR (2006) ‘The predators within’: investigating the relationship between malaria and health in the prehistoric Pacific Islands. Bioarchaeol Southeast Asia 43:309

    Article  Google Scholar 

  • Buikstra JE, Ubelaker DH (1994) Standards for data collection from human skeletal remains. Res Ser 44

  • Camaschella C (2019) Iron deficiency. Blood 133(1):30–39. https://doi.org/10.1182/blood-2018-05-815944

    Article  Google Scholar 

  • Choque-Quispe BM, Paz V, Gonzales GF (2019) Proportion of anemia attributable to iron deficiency in high-altitude infant populations. Ann Hematol 98(11):2601–2603

    Article  Google Scholar 

  • Cole G, Waldron T (2019) Cribra orbitalia: dissecting an ill-defined phenomenon. Int J Osteoarchaeol 29(4):613–621. https://doi.org/10.1002/oa.2757

    Article  Google Scholar 

  • Cornero S, Puche RC (2002) Cribra orbitalia (hiperostosis porótica) en una población prehistórica del Paraná medio. Medicina (Buenos Aires) 62:169–172

    Google Scholar 

  • Curto A, Mahoney P, Maurer A-F, Barrocas-Dias C, Fernandes T, Fahy GE (2019) Diet and disease in Tomar, Portugal: comparing stable carbon and nitrogen isotope ratios between skeletons with and without signs of infectious disease. J Archaeol Sci 105:59–69

    Article  Google Scholar 

  • Dabbs GR (2011) Health status among prehistoric Eskimos from Point Hope, Alaska. Am J Phys Anthropol 146(1):94–103

    Article  Google Scholar 

  • de Miguel Ibáñez MP (2016) La maqbara de Pamplona (s. VIII). Aportes de la osteoarqueología al conocimiento de la islamización en la Marca Superior. Doctoral thesis, Universidad de Alicante

  • DeWitte SN (2014) Differential survival among individuals with active and healed periosteal new bone formation. Int J Paleopathol 7:38–44. https://doi.org/10.1016/j.ijpp.2014.06.001

    Article  Google Scholar 

  • Djuric M, Milovanovic P, Janovic A, Draskovic M, Djukic K, Milenkovic P (2008) Porotic lesions in immature skeletons from Stara Torina, late medieval Serbia. Int J Osteoarchaeol 18(5):458–475

    Article  Google Scholar 

  • du Souich Henrici P (1979) Estudio antropológico de la necrópolis medieval de La Torrecilla (Arenas del Rey, Granada). Antropol Paleoecol Hum 1:27–40

    Google Scholar 

  • Dupouy-Camet J, Gay M, Houin R (2020) New eating habits, new parasitic risks: the example of fish. Bull Acad Natl Med 204(9):1010–1016

    Google Scholar 

  • Durrani M, Basit H, Blazar E (2021) Diphyllobothrium latum. StatPearls

  • Facchini F, Rastelli E, Brasili P (2004) Cribra orbitalia and cribra cranii in Roman skeletal remains from the Ravenna area and Rimini (I–IV century AD). Int J Osteoarchaeol 14(2):126–136

    Article  Google Scholar 

  • Fernández Astasio B (2002) La erradicación del paludismo en España: aspectos biológicos de la lucha antipalúdica. Doctoral thesis. Universidad Complutense de Madrid

  • Ferreira Priegue EM (1989) El comercio de las villas costeras de Galicia en la Baja Edad Media. El Museo de Pontevedra 43:247–264

    Google Scholar 

  • Galera V (1989) La población medieval cántabra de Santa María de Hito. Aspectos paleodemográficos, morfológicos, paleopatológicos, paleoepidemiológicos y de etnogénesis. Doctoral thesis. Universidad de Madrid

  • Göhring A (2021) Allen’s fossa—an attempt to dissolve the confusion of different nonmetric variants on the anterior femoral neck. Int J Osteoarchaeol. https://doi.org/10.1002/oa.2968

    Article  Google Scholar 

  • Goodman A, Armelagos G (1989) Infant and childhood morbidity and mortality risks in archaeological populations. World Archaeol 21(2):225–243. https://doi.org/10.1080/00438243.1989.9980103

    Article  Google Scholar 

  • Goodman A, Martin DL (2002) Reconstructing health profiles from skeletal remains. The Backbone of History: Health and Nutrition in the Western Hemisphere. 2:11

  • Gowland R, Garnsey P (2010) Skeletal evidence for health, nutritional status and malaria in Rome and the empire. J Rom Arch Suppl Ser 78:131–156

    Google Scholar 

  • Gowland R, Redfern R (2010) Childhood health in the Roman world: perspectives from the centre and margin of the Empire. Child Past 3(1):15–42

    Article  Google Scholar 

  • Gowland R, Western AG (2012) Morbidity in the marshes: using spatial epidemiology to investigate skeletal evidence for malaria in Anglo-Saxon England (AD 410–1050). Am J Phys Anthropol 147(2):301–311

    Article  Google Scholar 

  • Halcrow SE, Tayles N (2008) The bioarchaeological investigation of childhood and social age: problems and prospects. J Archaeol Method Theory 15(2):190–215

    Article  Google Scholar 

  • Harper K (2016) Invisible environmental history: infectious disease in late antiquity. Late Antique Archaeol 12(1):116–131

    Article  Google Scholar 

  • Harper K (2017) The fate of Rome: climate, disease, and the end of an empire. Princeton University Press

  • Hengen OP (1971) Cribra orbitalia: pathogenesis and probable etiology. Homo 22:57–75

    Google Scholar 

  • Killgrove K (2014) Bioarchaeology in the Roman Empire. Encyclopedia of Global Archaeology, ed. C

  • Killgrove K (2018) Using skeletal remains as a proxy for Roman lifestyles: the potential and problems with osteological reconstructions of health, diet, and stature in Imperial Rome. A handbook to diet and nutrition in the Roman world, 245–258

  • Knip AS (1971) Frequencies of non-metrical variants in Tellem and Nokara skulls from Mali Republic. 1. Proc Koninklijke Nederlandse Akademie Van Wetenschappen Sers C-Biol Med Sci 74(5):422

  • Lagia A, Eliopoulos C, Manolis S (2007) Thalassemia: macroscopic and radiological study of a case. Int J Osteoarchaeol 17(3):269–285

    Article  Google Scholar 

  • Lewis M (2007) The bioarchaeology of children: perspectives from biological and forensic anthropology (Vol. 50). Cambridge University Press

  • Lewis M (2010) Life and death in a civitas capital: metabolic disease and trauma in the children from late Roman Dorchester, Dorset. Am J Phys Anthropol 142:405–416

    Article  Google Scholar 

  • Lewis M (2012) Thalassaemia: its diagnosis and interpretation in past skeletal populations. Int J Osteoarchaeol 22(6):685–693

    Article  Google Scholar 

  • Lewis M (2018) Children in bioarchaeology: methods and interpretations. Biol Anthropol Hum Skelet 117–144

  • Lewis M, Roberts C (1997) Growing pains: the interpretation of stress indicators. Int J Osteoarchaeol 7(6):581–586

    Article  Google Scholar 

  • Liebe-Harkort C (2012) Cribra orbitalia, sinusitis and linear enamel hypoplasia in Swedish Roman Iron Age adults and subadults. Int J Osteoarchaeol 22(4):387–397. https://doi.org/10.1002/oa.1209

    Article  Google Scholar 

  • Lillehammer G (2018) The history of the archaeology of childhood. In: Crawford S, Hadley D, Shepherd GB (eds) The Oxford handbook of the archaeology of childhood. Oxford University Press

    Google Scholar 

  • López-Costas O (2012) Antropología de los restos óseos humanos de Galicia: estudio de la población romana y medieval gallega. Universidad de Granada, Tesis doctoral

    Google Scholar 

  • Lopez-Costas O, Muldner G (2016) Fringes of the empire: diet and cultural change at the Roman to post-Roman transition in NW Iberia. Am J Phys Anthropol 161(1):141–154. https://doi.org/10.1002/ajpa.23016

    Article  Google Scholar 

  • López-Costas O, Müldner G (2019) Boom and bust at a medieval fishing port: dietary preferences of fishers and artisan families from Pontevedra (Galicia, NW Spain) during the Late Medieval and early modern period. Archaeol Anthropol Sci 11(8):3717–3731

    Article  Google Scholar 

  • Lopez-Costas O, Rissech C, Trancho G, Turbon D (2012) Postnatal ontogenesis of the tibia. Implications for age and sex estimation. Forensic Sci Int 214(1–3):207.e1. https://doi.org/10.1016/j.forsciint.2011.07.038

    Article  Google Scholar 

  • Lopez A, Cacoub P, Macdougall IC, Peyrin-Biroulet L (2016) Iron deficiency anaemia. Lancet 387(10021):907–916. https://doi.org/10.1016/S0140-6736(15)60865-0

    Article  Google Scholar 

  • López B (2000) Estudio Antropológico de poblaciones históricas de Castilla y León. Doctoral thesis, Universidad de Leon

  • MacKinnon AT, Passalacqua NV, Bartelink EJ (2019) Exploring diet and status in the Medieval and Modern periods of Asturias, Spain, using stable isotopes from bone collagen. Archaeol Anthropol Sci 11(8):3837–3855

    Article  Google Scholar 

  • Márquez-Grant N (2006) A bioanthropological perspective on the Punic period in Ibiza (Spain) as evidenced by human skeletal remains. University of Oxford, Oxford

    Google Scholar 

  • Martini M, Tornali C, Bragazzi NL, Paluan F, Vardeu MF (2019) The history of beta thalassaemia in Sardinia: the contribution of the Italian schools of pediatrics. Acta Medico-Historica Adriatica: AMHA 17(1):65–90

    Article  Google Scholar 

  • Masa Vázquez MC (1987) Estudio anatomo-antropológico de la órbita, en habitantes antiguos del N.O. peninsular. Doctoral thesis, Universidade de Santiago de Compostela

  • Mays S (2014) The palaeopathology of scurvy in Europe. Int J Paleopathol 5:55–62. https://doi.org/10.1016/j.ijpp.2013.09.001

    Article  Google Scholar 

  • McIlvaine BK (2015) Implications of reappraising the iron-deficiency anemia hypothesis. Int J Osteoarchaeol 25(6):997–1000

    Article  Google Scholar 

  • Mendiela S, Rissech C, Haber M, Pujol-Bayona A, Lomba J, Turbón D (2014) Childhood growth and health in Camino del Molino (Caravaca de la Cruz, Murcia, Spain) a collective burial of the III Millennium cal. BC. A preliminary approach. In: Adés A (ed). Barcelona, pp. 101–106

  • Mensforth RP, Lovejoy CO, Lallo JW, Armelagos GJ (1978) Part two: the role of constitutional factors, diet, and infectious disease in the etiology of porotic hyperostosis and periosteal reactions in prehistoric infants and children. Med Anthropol 2(1):1–59

    Article  Google Scholar 

  • Mesa LG, Benavides RMM, Brobeil SAJ (2017) Estudio antropológico de los subadultos del cementerio nazarí de Talará (Valle de Lecrín, Granada). Libros EPCCM/Universidad de Granada, pp 570–590

  • Miquel-Feucht MJ, Polo-Cerdá M, Villalaín-Blanco JD (1999) El síndrome criboso: criba femoral vs criba orbitaria. Actas V Congreso Nacional de Paleopatología, Asociación Española de Paleontología. Alcalá la Real, Jaén

  • Mitchell PD (2015) Human parasites in medieval Europe: lifestyle, sanitation and medical treatment. Adv Parasitol 90:389–420

    Article  Google Scholar 

  • Mittler DM, Van Gerven DP (1994) Developmental, diachronic, and demographic analysis of cribra orbitalia in the medieval Christian populations of Kulubnarti. Am J Phys Anthropol 93(3):287–297

    Article  Google Scholar 

  • Mokhtar GM, Gadallah M, El Sherif NHK, Ali HTA (2013) Morbidities and mortality in transfusion-dependent beta-thalassemia patients (single-center experience). Pediatr Hematol Oncol 30(2):93–103

    Article  Google Scholar 

  • Møller-Christensen V, Sandison AT (1963) Usura orbitae (cribra orbitalia) in the collection of crania in the Anatomy Department of the University of Glasgow. Pathobiology 26(2):175–183

    Article  Google Scholar 

  • Nagaoka T, Seki Y, Uzawa K, Takigami M, Chocano DM (2018) Prevalence of cribra orbitalia in Pacopampa during the formative period in Peru. Anat Sci Int 93(2):254–261

    Article  Google Scholar 

  • Nathan H, Haas N (1966) On the presence of cribra orbitalia in apes and monkeys. Am J Phys Anthropol 24(3):351–359

    Article  Google Scholar 

  • O’Donnell L (2019) Indicators of stress and their association with frailty in the precontact Southwestern United States. Am J Phys Anthropol 170(3):404–417

    Article  Google Scholar 

  • Oguntibeju OO (2003) Parasitic infestation and anaemia: the prevalence in a rural hospital setting. J Indian Acad Clin Med 4:210–212

    Google Scholar 

  • Ortner DJ (2003) Identification of pathological conditions in human skeletal remains. Academic Press

    Google Scholar 

  • Ortner DJ, Butler W, Cafarella J, Milligan L (2001) Evidence of probable scurvy in subadults from archeological sites in North America. Am J Phys Anthropol 114(4):343–351. https://doi.org/10.1002/ajpa.1046

    Article  Google Scholar 

  • Ortner DJ, Mays S (1998) Dry-bone manifestations of rickets in infancy and early childhood. Int J Osteoarchaeol 8(1):45–55

    Article  Google Scholar 

  • Ortner DJ, Putschar WGJ (1985) Identification of pathological lesions in human skeletal remains, vol 28. Smithsonian Institution, Smithsonian Contributions to Anthropology, Washington, DC

    Google Scholar 

  • Oxenham MF, Cavill I (2010) Porotic hyperostosis and cribra orbitalia: the erythropoietic response to iron-deficiency anaemia. Anthropol Sci 118(3):199–200

    Article  Google Scholar 

  • Paredes J, Maria T, Wasterlain SN (2015) Growth problems in a skeletal sample of children abandoned at Santa Casa da Misericórdia, Faro, Portugal (16th–19th centuries). Anthropol Sci 123:49–59

    Article  Google Scholar 

  • Passalacqua N (2012) Bioarchaeological investigations of health and demography in Medieval Asturias, Spain. Doctoral thesis, University of Michigan

  • Perez-Perez A, Lalueza C (1992) Indicadores de estrés nutricional y patológico en series de época romana en Catalunya. Munibe Antropologia y Arqueologia 8:145–151

    Google Scholar 

  • Pivkin IV, Peng Z, Karniadakis GE, Buffet PA, Dao M, Suresh S (2016) Biomechanics of red blood cells in human spleen and consequences for physiology and disease. Proc Natl Acad Sci 113(28):7804–7809

    Article  Google Scholar 

  • Polo-Cerdá M, Miquel-Feucht MJ, Villalaín-Blanco JD (1999) Un modelo experimental de cribra orbitalia: estudio preliminar. Actas del V Congreso Nacional de Paleopatología, Alcalá La Real (Jaén)

  • Prada Marcos ME (1993) Estudio antropológico de los restos humanos medievales y modernos de la necrópolis leonesa de Palat de Rey. Doctoral thesis, Universidad de Leon

  • Puchalt Fortea FJ (2017) La Criba Orbitaria en la Necrópolis Morisca de Benipeixcar, Gandía. Actas del XIII Congreso Nacional de Paleopatología. Écija, Sevilla, 317–320

  • Radi N, Mariotti V, Riga A, Zampetti S, Villa C, Belcastro MG (2013) Variation of the anterior aspect of the femoral head-neck junction in a modern human identified skeletal collection. Am J Phys Anthropol 152(2):261–272. https://doi.org/10.1002/ajpa.22354

    Article  Google Scholar 

  • Rascón Pérez J, Antona Montoro AM, González Martín A, Pérez Martín S, Rodríguez González AI, Cambra Ó (2001) Estudio de cribra orbitalia e hipoplasia del esmalte en la población medieval de La Necrópolis de Veranes (Principado de Asturias). Actas del VI Congreso Nacional de Paleopatología (Madrid)

  • Ribeiro ML, Gonplves P, Cunha E, Bentol C, Almeida H, Pereira J, …, Tamagnini GP (1997) Genetic heterogeneity of β-thalassemia in populations of the Iberian Peninsula. Hemoglobin 21(3):261–269

  • Ricci R, Mancinelli D, Vargiu R, Cucina A, Santandrea E, Capelli A, Catalano P (1997) Pattern of porotic hyperostosis and quality of life in a II century AD farm near Rome. Rivista Di Antropologia (Roma) 75:117–128

    Google Scholar 

  • Rinaldo N, Zedda N, Bramanti B, Rosa I, Gualdi-Russo E (2019) How reliable is the assessment of porotic hyperostosis and cribra orbitalia in skeletal human remains? A methodological approach for quantitative verification by means of a new evaluation form. Archaeol Anthropol Sci. https://doi.org/10.1007/s12520-019-00780-0

  • Rivera F, Mirazón Lahr M (2017) New evidence suggesting a dissociated etiology for cribra orbitalia and porotic hyperostosis. Am J Phys Anthropol 164(1):76–96

    Article  Google Scholar 

  • Roberts CA, Manchester K (2005) The archaeology of disease. Sutton Publishing, Stroud

    Google Scholar 

  • Robledo B, Trancho GJ, Brothwell D (1996) Cribra orbitalia: health indicator in the Late Roman population of Cannington (Sommerset, Great Britain). J Paleopathol 7:185–194

    Google Scholar 

  • Robles FJ, González A, García C (1996) Indicadores de estrés en la población hispano-musulmana de San Nicolás (Murcia, s. XI a XIII). Salud, Enfermedad y Muerte en el Pasado. Universidad de Barcelona, Barcelona, p 109–119

  • Rohnbogner A, Lewis M (2017) Poundbury Camp in context—a new perspective on the lives of children from urban and rural Roman England. Am J Phys Anthropol 162(2):208–228

    Article  Google Scholar 

  • Rosado Batea MI, del Vidal Casero MC (1985) Paludismo en el siglo XVIII: graves epidemias de tercianas afectaron al este español en los años 1784 y 1785. Gimbernat: Revista d’Història de la Medicina i de les Ciències de la Salut 4:323–33

  • Rothschild B (2012) Extirpolation of the mythology that porotic hyperostosis is caused by iron deficiency secondary to dietary shift to maize. Adv Anthropol 2(03):157

    Article  Google Scholar 

  • Rothschild BM, Rühli F, Sebes J, Naples V, Billard M (2004) Relationship between porotic hyperostosis and cribra orbitalia. PaleoBios 13:4–7

    Google Scholar 

  • Salvadei L, Ricci F, Manzi G (2001) Porotic hyperostosis as a marker of health and nutritional conditions during childhood: studies at the transition between Imperial Rome and the Early Middle Ages. Am J Hum Biol 13(6):709–717

    Article  Google Scholar 

  • Sánchez-Aparcero B, Alemán I, Botella MC (2020) The necropolis of Maro (Málaga, Spain): an anthropological study. Archaeol Anthropol Sci 12(7):153. https://doi.org/10.1007/s12520-020-01092-4

    Article  Google Scholar 

  • Scaffidi BK (2020) Spatial paleopathology: a geographic approach to the etiology of cribrotic lesions in the prehistoric Andes. Int J Paleopathol 29:102–116. https://doi.org/10.1016/j.ijpp.2019.07.002

    Article  Google Scholar 

  • Schultz M (2001) Paleohistopathology of bone: a new approach to the study of ancient diseases. Am J Phys Anthropol 116(S33):106–147

    Article  Google Scholar 

  • Scianò F, Bramanti B, Gualdi-Russo E (2021) A new investigative strategy to diagnose β-thalassemia syndrome in past human populations. Archaeol Anthropol Sci 13(2):26. https://doi.org/10.1007/s12520-020-01261-5

    Article  Google Scholar 

  • Stuart-Macadam P (1991) Anaemia in Roman Britain: Poundbury Camp. Health in past societies: biocultural interpretations of human skeletal remains in archaeological contexts. 567:101–113

  • Stuart-Macadam P (1985) Porotic hyperostosis: representative of a childhood condition. Am J Phys Anthropol 66(4):391–398

    Article  Google Scholar 

  • Stuart-Macadam P (1989) Porotic hyperostosis: relationship between orbital and vault lesions. Am J Phys Anthropol 80(2):187–193

    Article  Google Scholar 

  • Stuart-Macadam P (1992) Porotic hyperostosis: a new perspective. Am J Phys Anthropol 87(1):39–47

    Article  Google Scholar 

  • Suby JA (2014) Porotic hyperostosis and cribra orbitalia in human remains from southern Patagonia. Anthropol Sci 122(2):69–79

    Article  Google Scholar 

  • Temple DH (2019) Bioarchaeological evidence for adaptive plasticity and constraint: exploring life-history trade-offs in the human past. Evol Anthropolo Issues News Rev 28(1):34–46. https://doi.org/10.1002/evan.21754

    Article  Google Scholar 

  • Toso A, Gaspar S, da Silva RB, Garcia SJ, Alexander M (2019) High status diet and health in Medieval Lisbon: a combined isotopic and osteological analysis of the Islamic population from São Jorge Castle, Portugal. Archaeol Anthropol Sci 11(8):3699–3716

    Article  Google Scholar 

  • Trancho GJ, Botella M, Hernández M (1991) Cribra orbitalia: incidencia y distribución en diferentes poblaciones de la Península Ibérica. Laboratorio de Antropología. Universidad de Granada, Granada, pp 1011–1028

    Google Scholar 

  • Trevisan C, Torgerson PR, Robertson LJ (2019) Foodborne parasites in Europe: present status and future trends. Trends Parasitol 35(9):695–703

    Article  Google Scholar 

  • Vega de la Torre F, del Cotero Muñoz JN, Bringas B, Velarde JI (1992) Cribra Orbitalia: una encrucijada disgnóstica en Paleopatología. Munibe Suplemento 8:159–162

    Google Scholar 

  • Ventades NG, Pérez-Rubio C, Hervella M, de-la-Rúa, C. (2020) Rickets in a non-industrialised Iberian population: a case study in Vitoria-Gasteiz (Basque Country, Spain) between the 12th and 18th centuries. Quatern Int 566–567:245–255. https://doi.org/10.1016/j.quaint.2020.05.046

    Article  Google Scholar 

  • Villegas A, Ropero P, González FA, Anguita E, Espinós D (2001) The thalassemia syndromes: molecular characterization in the Spanish population. Hemoglobin 25(3):273–283

    Article  Google Scholar 

  • Walker PL (1986) Porotic hyperostosis in marine-dependent California Indian population. Am J Phys Anthropol 69:345–354

    Article  Google Scholar 

  • Walker PL, Bathurst RR, Richman R, Gjerdrum T, Andrushko VA (2009) The causes of porotic hyperostosis and cribra orbitalia: a reappraisal of the iron-deficiency-anemia hypothesis. Am J Phys Anthropol 139(2):109–125. https://doi.org/10.1002/ajpa.21031

    Article  Google Scholar 

  • Wapler U, Crubézy E, Schultz M (2004) Is cribra orbitalia synonymous with anemia? Analysis and interpretation of cranial pathology in Sudan. Am J Phys Anthropol 123(4):333–339. https://doi.org/10.1002/ajpa.10321

    Article  Google Scholar 

  • Wasterlain SN, Costa A, Ferreira MT (2018) Growth faltering in a skeletal sample of enslaved nonadult Africans found at Lagos, Portugal (15th–17th centuries). Int J Osteoarchaeol 28(2):162–169

    Article  Google Scholar 

  • Waters-Rist AL, Katzenberg MA (2010) The effect of growth on stable nitrogen isotope ratios in subadult bone collagen. Int J Osteoarchaeol 20(2):172–191

    Google Scholar 

  • Wood JW, Milner GR, Harpending HC, Weiss KM, Cohen MN, Eisenberg LE, …, Wilkinson RG (1992) The osteological paradox: problems of inferring prehistoric health from skeletal samples [and comments and reply]. Curr Anthropol 33(4):343–370. https://doi.org/10.1086/204084

Download references

Acknowledgements

Many thanks to the Museo Provincial de Pontevedra, Museo Provincial de Lugo and Dirección Xeral de Patrimonio Histórico da Xunta Galicia for providing access to the skeletal collections. Thanks to the directors of archaeological interventions (Adolfo Fernández, Javier Chao, José Carro Otero, María del Carmen Masa Vázquez and Iván Álvarez Meraio) and all other members of the teams for their assistance during the archaeological fieldwork. We thank Antonio Martinez Cortizas for his suggestions and comments in an early version of the manuscript. Special thanks go to María del Carmen Masa Vázquez for her help and support to both of us. Thanks to Tim Mighall for his help in an early version of the manuscript.

Funding

This project is funded by Grupos de Referencia Competitiva (ED431C 2021/32). OLC is funded by a JIN-2019 postdoctoral fellowship. This work was supported by the projects Plan Nacional Retos JIN 2019 (PID2019-111683RJ-I00) from Ministerio de Ciencia e Innovación; Beca Leonardo a Investigadores y Creadores Culturales 2020 de la Fundación BBVA, as well as Galician Paleodiet (ED481D 2017/014), Gain project ‘persoal investigador finalista nas convocatorias de axudas do ERC no marco do H2020’ (2020-CP037) and GPC (ED431B 2018/20) all funded by Xunta de Galicia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elvira Mangas-Carrasco.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 139 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mangas-Carrasco, E., López-Costas, O. Porotic hyperostosis, cribra orbitalia, femoralis and humeralis in Medieval NW Spain. Archaeol Anthropol Sci 13, 169 (2021). https://doi.org/10.1007/s12520-021-01432-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12520-021-01432-y

Keywords

Navigation