Skip to main content

Advertisement

Log in

Impact of body mass index on pathological complete response following neoadjuvant chemotherapy in operable breast cancer: a meta-analysis

  • Original Article
  • Published:
Breast Cancer Aims and scope Submit manuscript

Abstract

Purpose

The impact of an increased body mass index (BMI) on outcomes of neoadjuvant chemotherapy (NACT) in breast cancer remains controversial. The purpose of this study was to analyze the impact of BMI on pathological complete response (pCR) rates for operable breast cancer after NACT.

Methods

We searched Medline, Embase, and Web of Science database for observational studies and randomized controlled trials that reported the association of BMI with pCR after NACT. We performed a meta-analysis to assess the impact of BMI on pCR rate.

Results

We identified 13 studies including a total of 18,702 women with operable breast cancer who underwent NACT. Two studies were pooled analyses of prospective clinical trials (10,669 patients); the rest were case–control studies (8033 patients). All studies provided data of two BMI groups (BMI < 25 vs. BMI ≥ 25). Pooled analyses demonstrated that overweight/obese women were less likely to achieve pCR after NACT as compared to under-/normal weight women (odds ratio (OR) = 0.80; 95% confidence interval (CI): 0.68–0.93). Eleven studies provided data of three BMI groups (BMI < 25, 25 ≤ BMI < 30, BMI ≥ 30). Based on pooled analyses, both overweight and obese groups were less likely to achieve pCR with NACT as compared to under-/normal weight group, (OR = 0.77, 95% CI 0.65–0.93 and OR = 0.68, 95% CI 0.61–0.77, respectively).

Conclusions

Overweight and obese breast cancer patients had a lower pCR rate with NACT compared to patients with under-/normal weight. Further prospective studies may help confirm this finding and investigate possible mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Flegal KM, Kruszon-Moran D, Carroll MD, Fryar CD, Ogden CL. Trends in obesity among adults in the United States, 2005 to 2014. JAMA. 2016;315(21):2284–91. https://doi.org/10.1001/jama.2016.6458.

    Article  CAS  PubMed  Google Scholar 

  2. Pischon T, Nimptsch K. Obesity and risk of cancer: an introductory overview. Recent Results Cancer Res. 2016;208:1–15. https://doi.org/10.1007/978-3-319-42542-9_1.

    Article  CAS  PubMed  Google Scholar 

  3. Haslam DW, James WP. Obesity. Lancet. 2005;366(9492):1197–209. https://doi.org/10.1016/s0140-6736(05)67483-1.

    Article  PubMed  Google Scholar 

  4. Munsell MF, Sprague BL, Berry DA, Chisholm G, Trentham-Dietz A. Body mass index and breast cancer risk according to postmenopausal estrogen-progestin use and hormone receptor status. Epidemiol Rev. 2014;36:114–36. https://doi.org/10.1093/epirev/mxt010.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Borugian MJ, Sheps SB, Kim-Sing C, Olivotto IA, Van Patten C, Dunn BP, Coldman AJ, Potter JD, Gallagher RP, Hislop TG. Waist-to-hip ratio and breast cancer mortality. Am J Epidemiol. 2003;158(10):963–8. https://doi.org/10.1093/aje/kwg236.

    Article  PubMed  Google Scholar 

  6. Dawood S, Broglio K, Gonzalez-Angulo AM, Kau SW, Islam R, Hortobagyi GN, Cristofanilli M. Prognostic value of body mass index in locally advanced breast cancer. Clin Cancer Res. 2008;14(6):1718–25. https://doi.org/10.1158/1078-0432.ccr-07-1479.

    Article  PubMed  Google Scholar 

  7. Warren LE, Ligibel JA, Chen YH, Truong L, Catalano PJ, Bellon JR. Body mass index and Locoregional recurrence in women with early-stage breast cancer. Ann Surg Oncol. 2016;23(12):3870–9. https://doi.org/10.1245/s10434-016-5437-3.

    Article  PubMed  Google Scholar 

  8. Kroenke CH, Chen WY, Rosner B, Holmes MD. Weight, weight gain, and survival after breast cancer diagnosis. J Clin Oncol. 2005;23(7):1370–8. https://doi.org/10.1200/jco.2005.01.079.

    Article  PubMed  Google Scholar 

  9. Protani M, Coory M, Martin JH. Effect of obesity on survival of women with breast cancer: systematic review and meta-analysis. Breast Cancer Res Treat. 2010;123(3):627–35. https://doi.org/10.1007/s10549-010-0990-0.

    Article  PubMed  Google Scholar 

  10. Rastogi P, Anderson SJ, Bear HD, Geyer CE, Kahlenberg MS, Robidoux A, Margolese RG, Hoehn JL, Vogel VG, Dakhil SR, Tamkus D, King KM, Pajon ER, Wright MJ, Robert J, Paik S, Mamounas EP, Wolmark N. Preoperative chemotherapy: updates of National Surgical Adjuvant Breast and Bowel Project Protocols B-18 and B-27. J Clin Oncol. 2008;26(5):778–85. https://doi.org/10.1200/jco.2007.15.0235.

    Article  PubMed  Google Scholar 

  11. Esserman LJ, Berry DA, DeMichele A, Carey L, Davis SE, Buxton M, Hudis C, Gray JW, Perou C, Yau C, Livasy C, Krontiras H, Montgomery L, Tripathy D, Lehman C, Liu MC, Olopade OI, Rugo HS, Carpenter JT, Dressler L, Chhieng D, Singh B, Mies C, Rabban J, Chen YY, Giri D, van’t Veer L, Hylton N. Pathologic complete response predicts recurrence-free survival more effectively by cancer subset: results from the I-SPY 1 TRIAL–CALGB 150007/150012, ACRIN 6657. J Clin Oncol. 2012;30(26):3242–9. https://doi.org/10.1200/JCO.2011.39.2779.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Yee D, DeMichele A, Isaacs C, Symmans F, Yau C, Albain KS, Hylton NM, et al Pathological complete response predicts event-free and distant disease-free survival in the I-SPY2 TRIAL. In: San Antonio Breast Cancer Symposium, San Antonio, Texas, 2017. SABCS, p 22.

  13. Cortazar P, Zhang L, Untch M, Mehta K, Costantino JP, Wolmark N, Bonnefoi H, Cameron D, Gianni L, Valagussa P, Swain SM, Prowell T, Loibl S, Wickerham DL, Bogaerts J, Baselga J, Perou C, Blumenthal G, Blohmer J, Mamounas EP, Bergh J, Semiglazov V, Justice R, Eidtmann H, Paik S, Piccart M, Sridhara R, Fasching PA, Slaets L, Tang S, Gerber B, Geyer CE, Pazdur R, Ditsch N, Rastogi P, Eiermann W, von Minckwitz G. Pathological complete response and long-term clinical benefit in breast cancer: the CTNeoBC pooled analysis. Lancet. 2014;384(9938):164–72. https://doi.org/10.1016/S0140-6736(13)62422-8.

    Article  PubMed  Google Scholar 

  14. Administration FaD (2014) Guidance for Industry: Pathological complete response in neoadjuvant treatment of high-risk early-stage breast cancer: Use as an endpoint to support accelerated approval. fda.gov.

  15. von Minckwitz G, Blohmer JU, Costa SD, Denkert C, Eidtmann H, Eiermann W, Gerber B, Hanusch C, Hilfrich J, Huober J, Jackisch C, Kaufmann M, Kummel S, Paepke S, Schneeweiss A, Untch M, Zahm DM, Mehta K, Loibl S. Response-guided neoadjuvant chemotherapy for breast cancer. J Clin Oncol. 2013;31(29):3623–30. https://doi.org/10.1200/jco.2012.45.0940.

    Article  Google Scholar 

  16. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):e1000097. https://doi.org/10.1371/journal.pmed.1000097.

    Article  PubMed  PubMed Central  Google Scholar 

  17. The metafor Package: a Meta-analysis Package for R (2019) http://www.metafor-project.org.

  18. Borenstein M, Hedges LV, Higgins JPT, Rothstein HR. Introduction to Meta-Analysis. Chichester: Wiley; 2009.

    Book  Google Scholar 

  19. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327(7414):557–60. https://doi.org/10.1136/bmj.327.7414.557.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Huedo-Medina TB, Sanchez-Meca J, Marin-Martinez F, Botella J. Assessing heterogeneity in meta-analysis: Q statistic or I2 index? Psychol Methods. 2006;11(2):193–206. https://doi.org/10.1037/1082-989x.11.2.193.

    Article  PubMed  Google Scholar 

  21. Peters JL, Sutton AJ, Jones DR, Abrams KR, Rushton L. Contour-enhanced meta-analysis funnel plots help distinguish publication bias from other causes of asymmetry. J Clin Epidemiol. 2008;61(10):991–6. https://doi.org/10.1016/j.jclinepi.2007.11.010.

    Article  PubMed  Google Scholar 

  22. Chen S, Chen CM, Zhou Y, Zhou RJ, Yu KD, Shao ZM. Obesity or overweight is associated with worse pathological response to neoadjuvant chemotherapy among Chinese women with breast cancer. PLoS ONE. 2012;7(7):e41380. https://doi.org/10.1371/journal.pone.0041380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Eralp Y, Smith TL, Altundağ K, Kau SW, Litton J, Valero V, Buzdar A, Hortobagyi GN, Arun B. Clinical features associated with a favorable outcome following neoadjuvant chemotherapy in women with localized breast cancer aged 35 years or younger. J Cancer Res Clin Oncol. 2009;135(1):141–8. https://doi.org/10.1007/s00432-008-0428-9.

    Article  CAS  PubMed  Google Scholar 

  24. Karatas F, Erdem GU, Sahin S, Aytekin A, Yuce D, Sever AR, Babacan T, Ates O, Ozisik Y, Altundag K. Obesity is an independent prognostic factor of decreased pathological complete response to neoadjuvant chemotherapy in breast cancer patients. Breast. 2017;32:237–44. https://doi.org/10.1016/j.breast.2016.05.013.

    Article  PubMed  Google Scholar 

  25. Iwase T, Sangai T, Nagashima T, Sakakibara M, Sakakibara J, Hayama S, Ishigami E, Masuda T, Miyazaki M. Impact of body fat distribution on neoadjuvant chemotherapy outcomes in advanced breast cancer patients. Cancer Med. 2016;5(1):41–8. https://doi.org/10.1002/cam4.571.

    Article  PubMed  Google Scholar 

  26. Warner ET, Ballman KV, Strand C, Boughey JC, Buzdar AU, Carey LA, Sikov WM, Partridge AH. Impact of race, ethnicity, and BMI on achievement of pathologic complete response following neoadjuvant chemotherapy for breast cancer: a pooled analysis of four prospective Alliance clinical trials (A151426). Breast Cancer Res Treat. 2016;159(1):109–18. https://doi.org/10.1007/s10549-016-3918-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Arce-Salinas C, Aguilar-Ponce JL, Villarreal-Garza C, Lara-Medina FU, Olvera-Caraza D, Alvarado Miranda A, Flores-Diaz D, Mohar A. Overweight and obesity as poor prognostic factors in locally advanced breast cancer patients. Breast Cancer Res Treat. 2014;146(1):183–8. https://doi.org/10.1007/s10549-014-2977-8.

    Article  CAS  PubMed  Google Scholar 

  28. Fontanella C, Lederer B, Gade S, Vanoppen M, Blohmer JU, Costa SD, Denkert C, Eidtmann H, Gerber B, Hanusch C, Hilfrich J, Huober J, Schneeweiss A, Paepke S, Jackisch C, Mehta K, Nekljudova V, Untch M, Neven P, von Minckwitz G, Loibl S. Impact of body mass index on neoadjuvant treatment outcome: a pooled analysis of eight prospective neoadjuvant breast cancer trials. Breast Cancer Res Treat. 2015;150(1):127–39. https://doi.org/10.1007/s10549-015-3287-5.

    Article  CAS  PubMed  Google Scholar 

  29. Kogawa T, Fujii T, Fouad TM, Liu DD, Harano K, Masuda H, Iwase T, Barnett C, Park YS, Lim B, Tripathy D, Litton JK, Ueno NT. Impact of change in body mass index during neoadjuvant chemotherapy and survival among breast cancer subtypes. Breast Cancer Res Treat. 2018;171(2):501–11. https://doi.org/10.1007/s10549-018-4853-4.

    Article  PubMed  Google Scholar 

  30. Kogawa T, Fouad TM, Wei C, Masuda H, Kai K, Fujii T, El-Zein R, Chavez-MacGregor M, Litton JK, Brewster A, Alvarez RH, Hortobagyi GN, Valero V, Theriault R, Ueno NT. Association of body mass index changes during neoadjuvant chemotherapy with pathologic complete response and clinical outcomes in patients with locally advanced breast cancer. J Cancer. 2015;6(4):310–8. https://doi.org/10.7150/jca.10580.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Elsamany S, Alzahrani A, Abozeed WN, Rasmy A, Farooq MU, Elbiomy MA, Rawah E, Alsaleh K, Abdel-Aziz NM. Mammographic breast density: predictive value for pathological response to neoadjuvant chemotherapy in breast cancer patients. Breast. 2015;24(5):576–81. https://doi.org/10.1016/j.breast.2015.05.007.

    Article  CAS  PubMed  Google Scholar 

  32. Erbes T, Stickeler E, Rücker G, Buroh S, Asberger J, Dany N, Thornton S, Iborra S, Hirschfeld M, Gitsch G, Mayer S. BMI and pathologic complete response to neoadjuvant chemotherapy in breast cancer: a study and meta-analysis. Clin Breast Cancer. 2016;16(4):e119-132. https://doi.org/10.1016/j.clbc.2016.02.018.

    Article  PubMed  Google Scholar 

  33. Niraula S, Ocana A, Ennis M, Goodwin PJ. Body size and breast cancer prognosis in relation to hormone receptor and menopausal status: a meta-analysis. Breast Cancer Res Treat. 2012;134(2):769–81. https://doi.org/10.1007/s10549-012-2073-x.

    Article  CAS  PubMed  Google Scholar 

  34. Ligibel JA, Strickler HD. Obesity and its impact on breast cancer: tumor incidence, recurrence, survival, and possible interventions. Am Soc Clin Oncol Educ Book. 2013. https://doi.org/10.1200/EdBook_AM.2013.33.52.

    Article  PubMed  Google Scholar 

  35. Goodwin PJ, Ennis M, Bahl M, Fantus IG, Pritchard KI, Trudeau ME, Koo J, Hood N. High insulin levels in newly diagnosed breast cancer patients reflect underlying insulin resistance and are associated with components of the insulin resistance syndrome. Breast Cancer Res Treat. 2009;114(3):517–25. https://doi.org/10.1007/s10549-008-0019-0.

    Article  CAS  PubMed  Google Scholar 

  36. McArdle MA, Finucane OM, Connaughton RM, McMorrow AM, Roche HM. Mechanisms of obesity-induced inflammation and insulin resistance: insights into the emerging role of nutritional strategies. Front Endocrinol (Lausanne). 2013;4:52. https://doi.org/10.3389/fendo.2013.00052.

    Article  Google Scholar 

  37. Kang C, LeRoith D, Gallagher EJ. Diabetes, obesity, and breast cancer. Endocrinology. 2018;159(11):3801–12. https://doi.org/10.1210/en.2018-00574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Irwin ML, Duggan C, Wang CY, Smith AW, McTiernan A, Baumgartner RN, Baumgartner KB, Bernstein L, Ballard-Barbash R. Fasting C-peptide levels and death resulting from all causes and breast cancer: the health, eating, activity, and lifestyle study. J Clin Oncol. 2011;29(1):47–53. https://doi.org/10.1200/jco.2010.28.4752.

    Article  CAS  PubMed  Google Scholar 

  39. Ye J. Emerging role of adipose tissue hypoxia in obesity and insulin resistance. Int J Obes (Lond). 2009;33(1):54–66. https://doi.org/10.1038/ijo.2008.229.

    Article  CAS  Google Scholar 

  40. Seiler A, Chen MA, Brown RL, Fagundes CP. Obesity, dietary factors, nutrition, and breast cancer risk. Curr Breast Cancer Rep. 2018;10(1):14–27. https://doi.org/10.1007/s12609-018-0264-0.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Trayhurn P. Hypoxia and adipose tissue function and dysfunction in obesity. Physiol Rev. 2013;93(1):1–21. https://doi.org/10.1152/physrev.00017.2012.

    Article  CAS  PubMed  Google Scholar 

  42. van Kruijsdijk RC, van der Wall E, Visseren FL. Obesity and cancer: the role of dysfunctional adipose tissue. Cancer Epidemiol Biomarkers Prev. 2009;18(10):2569–78. https://doi.org/10.1158/1055-9965.epi-09-0372.

    Article  PubMed  Google Scholar 

  43. Tornatore L, Thotakura AK, Bennett J, Moretti M, Franzoso G. The nuclear factor kappa B signaling pathway: integrating metabolism with inflammation. Trends Cell Biol. 2012;22(11):557–66. https://doi.org/10.1016/j.tcb.2012.08.001.

    Article  CAS  PubMed  Google Scholar 

  44. Prasad S, Ravindran J, Aggarwal BB. NF-kappaB and cancer: how intimate is this relationship. Mol Cell Biochem. 2010;336(1–2):25–37. https://doi.org/10.1007/s11010-009-0267-2.

    Article  CAS  PubMed  Google Scholar 

  45. Wang Z, Aguilar EG, Luna JI, Dunai C, Khuat LT, Le CT, Mirsoian A, Minnar CM, Stoffel KM, Sturgill IR, Grossenbacher SK, Withers SS, Rebhun RB, Hartigan-O’Connor DJ, Mendez-Lagares G, Tarantal AF, Isseroff RR, Griffith TS, Schalper KA, Merleev A, Saha A, Maverakis E, Kelly K, Aljumaily R, Ibrahimi S, Mukherjee S, Machiorlatti M, Vesely SK, Longo DL, Blazar BR, Canter RJ, Murphy WJ, Monjazeb AM. Paradoxical effects of obesity on T cell function during tumor progression and PD-1 checkpoint blockade. Nat Med. 2019;25(1):141–51. https://doi.org/10.1038/s41591-018-0221-5.

    Article  CAS  PubMed  Google Scholar 

  46. Oldenhove G, Boucquey E, Taquin A, Acolty V, Bonetti L, Ryffel B, Le Bert M, Englebert K, Boon L, Moser M. PD-1 is involved in the dysregulation of type 2 innate lymphoid cells in a murine model of obesity. Cell Rep. 2018;25(8):2053-2060.e2054. https://doi.org/10.1016/j.celrep.2018.10.091.

    Article  CAS  PubMed  Google Scholar 

  47. Sparreboom A, Wolff AC, Mathijssen RH, Chatelut E, Rowinsky EK, Verweij J, Baker SD. Evaluation of alternate size descriptors for dose calculation of anticancer drugs in the obese. J Clin Oncol. 2007;25(30):4707–13. https://doi.org/10.1200/jco.2007.11.2938.

    Article  CAS  PubMed  Google Scholar 

  48. Griggs JJ, Mangu PB, Anderson H, Balaban EP, Dignam JJ, Hryniuk WM, Morrison VA, Pini TM, Runowicz CD, Rosner GL, Shayne M, Sparreboom A, Sucheston LE, Lyman GH. Appropriate chemotherapy dosing for obese adult patients with cancer: American Society of Clinical Oncology clinical practice guideline. J Clin Oncol. 2012;30(13):1553–61. https://doi.org/10.1200/jco.2011.39.9436.

    Article  PubMed  Google Scholar 

  49. Lyman GH. Weight-based chemotherapy dosing in obese patients with cancer: back to the future. J Oncol Pract. 2012;8(4):e62-64. https://doi.org/10.1200/jop.2012.000606.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Renehan AG, Harvie M, Cutress RI, Leitzmann M, Pischon T, Howell S, Howell A. How to manage the obese patient with cancer. J Clin Oncol. 2016;34(35):4284–94. https://doi.org/10.1200/jco.2016.69.1899.

    Article  PubMed  Google Scholar 

  51. Lee KH, Keam B, Im SA, Kim TY, Han SW, Oh DY, Kim JH, Lee SH, Han W, Kim DW, Park IA, Noh DY, Heo DS, Bang YJ. Body mass index is not associated with treatment outcomes of breast cancer patients receiving neoadjuvant chemotherapy: korean data. J Breast Cancer. 2012;15(4):427–33. https://doi.org/10.4048/jbc.2012.15.4.427.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Farr A, Stolz M, Baumann L, Bago-Horvath Z, Oppolzer E, Pfeiler G, Seifert M, Singer CF. The effect of obesity on pathological complete response and survival in breast cancer patients receiving uncapped doses of neoadjuvant anthracycline-taxane-based chemotherapy. Breast. 2017;33:153–8. https://doi.org/10.1016/j.breast.2017.04.001.

    Article  PubMed  Google Scholar 

  53. Picon-Ruiz M, Morata-Tarifa C, Valle-Goffin JJ, Friedman ER, Slingerland JM. Obesity and adverse breast cancer risk and outcome: mechanistic insights and strategies for intervention. CA Cancer J Clin. 2017;67(5):378–97. https://doi.org/10.3322/caac.21405.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Litton JK, Gonzalez-Angulo AM, Warneke CL, Buzdar AU, Kau SW, Bondy M, Mahabir S, Hortobagyi GN, Brewster AM. Relationship between obesity and pathologic response to neoadjuvant chemotherapy among women with operable breast cancer. J Clin Oncol. 2008;26(25):4072–7. https://doi.org/10.1200/JCO.2007.14.4527.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Del Fabbro E, Parsons H, Warneke CL, Pulivarthi K, Litton JK, Dev R, Palla SL, Brewster A, Bruera E. The relationship between body composition and response to neoadjuvant chemotherapy in women with operable breast cancer. Oncologist. 2012;17(10):1240–5. https://doi.org/10.1634/theoncologist.2012-0169.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to express their great appreciation to the Cancer Center Support Grant: NIH/NCI P30 CA 077598, and to professor Naoto Ueno of MD Anderson Cancer Center for his kindness of sharing the dataset with us.

Funding

This study was funded by University of Minnesota Innovation Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Blaes.

Ethics declarations

Conflict of interest

The authors whose names are listed immediately below certify that they have NO afflictions with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript. Author names: Haiyun Wang, Shijia Zhang, Douglas Yee, Saonli Basu, Heather Beckwith, David Potter, Anne Blaes.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Zhang, S., Yee, D. et al. Impact of body mass index on pathological complete response following neoadjuvant chemotherapy in operable breast cancer: a meta-analysis. Breast Cancer 28, 618–629 (2021). https://doi.org/10.1007/s12282-020-01194-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12282-020-01194-w

Keywords

Navigation