Skip to main content
Log in

A Simple Method for Beta-glucosidase Immobilization and Its Application in Soybean Isoflavone Glycosides Hydrolysis

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

In this study, a simple, inexpensive and fast β-glucosidase immobilization system was constructed and evaluated in isoflavone glycosides hydrolysis. A β-glucosidase gene from Thermoascus aurantiacus IFO9748 was recombinantly expressed in Pichia pastoris KM71H and immobilized on regenerated amorphous cellulose (RAC) by fused cellulose binding module 3. Through simple mixing cellulose and crude enzyme for 15 min under room temperature, 96.04% β-glucosidase was immobilized onto RAC. The optimum temperature for β-glucosidase activity was increased by 5ºC after immobilization. The half-life (t½) of heat inactivation of immobilized enzyme at 60oC was improved over 8 folds. After 30 rounds recycled at 40oC, 96.9% daidzin and 98.9% genistin could still be hydrolyzed. A continuous hydrolysis system was also constructed, and at the flow rate of 0.2 mL/min after 30 h hydrolysis, 95.6% genistin and 90.2% daidzin can still be hydrolyzed. Combined the simple and high efficient enzyme immobilization procedure and inexpensive cellulose, this scalable and practical system may have broad prospects for industrial utilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shinjiro, I. (2015) Soybean and processed soy foods ingredients, and their role in cardiometabolic risk prevention. Recent. Pat. Food Nutr. Agric. 7: 75–82.

    Article  Google Scholar 

  2. Taku, K., M. K. Melby, J. Takebayashi, S. Mizuno, Y. Ishimi, T. Omori, and S. Watanabe (2010) Effect of soy isoflavone extract supplements on bone mineral density in menopausal women: meta-analysis of randomized controlled trials. Asia Pac. J. Clin. Nutr. 19: 33–42.

    CAS  Google Scholar 

  3. Izumi, T., M. K. Piskula, S. Osawa, A. Obata, K. Tobe, M. Saito, S. Kataoka, Y. Kubota, and M. Kikuchi (2000) Soy isoflavone aglycones are absorbed faster and in higher amounts than their glucosides in humans. J. Nutr. 130: 1695–1699.

    Article  CAS  Google Scholar 

  4. Delmonte, P., J. Perry, and J. I. Rader (2006) Determination of isoflavones in dietary supplements containing soy, red clover and kudzu: Extraction followed by basic or acid hydrolysis. J. Chromatogr. A. 1107: 59–69.

    Article  CAS  Google Scholar 

  5. Chiang, W. D., C. J. Shih, and Y. H. Chu (2001) Optimization of acid hydrolysis conditions for total isoflavones analysis in soybean hypocotyls by using RSM. Food Chem. 72: 499–503.

    Article  CAS  Google Scholar 

  6. Yatsu, F. K. J., L. S. Koester, and V. L. Bassani (2016) Isoflavone-aglycone fraction from Glycine max: a promising raw material for isoflavone-based pharmaceutical or nutraceutical products. Rev. Bras. Farmacogn. 26: 259–267.

    Article  CAS  Google Scholar 

  7. Fang, W., R. Song, X. X. Zhang, X. B. Zhang, X. C. Zhang, X. T. Wang, Z. M. Fang, and Y. Z. Xiao (2014) Characterization of a novel beta-glucosidase from Gongronella sp W5 and its application in the hydrolysis of soybean isoflavone glycosides. J. Agr. Food Chem. 62: 11688–11695.

    Article  CAS  Google Scholar 

  8. Song, X. F., Y. M. Xue, Q. L. Wang, and X. X. Wu (2011) Comparison of three thermostable beta-glucosidases for application in the hydrolysis of soybean isoflavone glycosides. J. Agr. Food Chem. 59: 1954–1961.

    Article  CAS  Google Scholar 

  9. Pei, X., J. Q. Zhao, P. L. Cai, W. L. Sun, J. Ren, Q. Q. Wu, S. H. Zhang, and C. G. Tian (2016) Heterologous expression of a GH3 beta-glucosidase from Neurospora crassa in Pichia pastoris with high purity and its application in the hydrolysis of soybean isoflavone glycosides. Protein Expres. Purif. 119: 75–84.

    Article  CAS  Google Scholar 

  10. Alftrén, J. and T. J. Hobley (2013) Covalent immobilization of beta-glucosidase on magnetic particles for lignocellulose hydrolysis. Appl. Biochem. Biotechnol. 169: 2076–2087.

    Article  Google Scholar 

  11. Tran, D. N. and K. J. Balkus (2011) Perspective of recent progress in immobilization of enzymes. Acs Catal. 1: 956–968.

    Article  CAS  Google Scholar 

  12. Tu, M. B., X. Zhang, A. Kurabi, N. Gilkes, W. Mabee, and J. Saddler (2006) Immobilization of beta-glucosidase on Eupergit C for lignocellulose hydrolysis. Biotechnol. Lett. 28: 151–156.

    Article  CAS  Google Scholar 

  13. Carvalho, Y., J. M. A. R. Almeida, P. N. Romano, K. Farrance, P. Demma Carà, N. Pereira, J. A. Lopez-Sanchez, and E. F. Sousa-Aguiar (2017) Nanosilicalites as support for beta-glucosidases covalent immobilization. Appl. Biochem. Biotechnol. 182: 1619–1629.

    Article  CAS  Google Scholar 

  14. Mohamad, N. R., N. H. C. Marzuki, N. A. Buang, F. Huyop,and R. A. Wahab (2015) An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes. Biotechnol. Biotech. Eng. 29: 205–220.

    Article  CAS  Google Scholar 

  15. Grigoras, A. G. (2017) Catalase immobilization-A review. Biochem. Eng. J. 117: 1–20.

    Article  CAS  Google Scholar 

  16. Romo-Sánchez, S., M. Arévalo-Villena, E. García Romero, H. L. Ramirez, and A. Briones Pérez (2014) Immobilization of betaglucosidase and its application for enhancement of aroma precursors in muscat wine. Food Bioproc. Tech. 7: 1381–1392.

    Article  Google Scholar 

  17. Jana, A., S. K. Halder, K. Ghosh, T. Paul, C. Vágvölgyi, K. C. Mondal, and P. K. D. Mohapatra (2015) Tannase immobilization by chitin-alginate based adsorption-entrapment technique and its exploitation in fruit juice clarification. Food Bioproc. Tech. 8: 2319–2329.

    Article  CAS  Google Scholar 

  18. Gürdaş, S., H. A. Güleç, and M. Mutlu (2012) Immobilization of Aspergillus oryzae beta-galactosidase onto duolite A568 resin via simple adsorption mechanism. Food Bioproc. Tech. 5: 904–911.

    Article  Google Scholar 

  19. Tischer, W. and F. Wedekind (1999) Immobilized enzymes: Methods and applications. Top Curr. Chem. 200: 95–126.

    Article  CAS  Google Scholar 

  20. Chen, K. I., Y. C. Lo, N. W. Su, C. C. Chou, and K. C. Cheng (2012) Enrichment of two isoflavone aglycones in black soymilk by immobilized beta-glucosidase on solid carriers. J. Agr. Food Chem. 60: 12540–12546.

    Article  CAS  Google Scholar 

  21. Chen, K. I., Y. C. Lo, C. W. Liu, R. C. Yu, C. C. Chou, and K. C. Cheng (2013) Enrichment of two isoflavone aglycones in black soymilk by using spent coffee grounds as an immobiliser for beta-glucosidase. Food Chem. 139: 79–85.

    Article  CAS  Google Scholar 

  22. Chang, J., Y.-S. Lee, S.-J. Fang, D.-J. Park, and Y.-L. Choi (2013) Hydrolysis of isoflavone glycoside by immobilization of beta-glucosidase on a chitosan-carbon in two-phase system. Int. J. Biol. Macromol. 61: 465–470.

    Article  CAS  Google Scholar 

  23. Chen, K. I., Y. J. Yao, H. J. Chen, Y. C. Lo, R. C. Yu, and K. C. Cheng (2016) Hydrolysis of isoflavone in black soy milk using cellulose bead as enzyme immobilizer. J. Food Drug Anal. 24: 788–795.

    Article  CAS  Google Scholar 

  24. Karav, S., J. L. Cohen, D. Barile, and J. M. L. N. de Moura Bell (2017) Recent advances in immobilization strategies for glycosidases. Biotechnol. Progr. 33: 104–112.

    Article  CAS  Google Scholar 

  25. Sheldon, R. A. and P. C. Pereira (2017) Biocatalysis engineering: the big picture. Chem. Soc. Rev. 46: 2678–2691.

    Article  CAS  Google Scholar 

  26. Wan, W., D. M. Wang, X. L. Gao, and J. Hong (2011) Expression of family 3 cellulose-binding module (CBM3) as an affinity tag for recombinant proteins in yeast. Appl. Microbiol. Biot. 91: 789–798.

    Article  CAS  Google Scholar 

  27. Hong, J., Y. R. Wang, X. H. Ye, and Y. H. P. Zhang (2008) Simple protein purification through affinity adsorption on regenerated amorphous cellulose followed by intein self-cleavage. J. Chromatogr. A. 1194: 150–154.

    Article  CAS  Google Scholar 

  28. Ahn, J. O., E. S. Choi, H. W. Lee, S. H. Hwang, C. S. Kim, H. W. Jang, S. J. Haam, and J. K. Jung (2004) Enhanced secretion of Bacillus stearothermophilus L1 lipase in Saccharomyces cerevisiae by translational fusion to cellulose-binding domain. Appl. Microbiol. Biot. 64: 833–839.

    Article  CAS  Google Scholar 

  29. Hong, J., H. Tamaki, and H. Kumagai (2007) Cloning and functional expression of thermostable beta-glucosidase gene from Thermoascus aurantiacus. Appl. Microbiol. Biot. 73: 1331–1339.

    Article  CAS  Google Scholar 

  30. Ahmed, S. A., N. M. A. El-Shayeb, A. M. Hashem, S. A. Saleh, and A. F. Abdel-Fattah (2013) Biochemical studies on immobilized fungal beta-glucosidase. Braz. J. Chem. Eng. 30: 747–758.

    Article  CAS  Google Scholar 

  31. Choi, Y. B., K. S. Kim, and J. S. Rhee (2002) Hydrolysis of soybean isoflavone glucosides by lactic acid bacteria. Biotechnol. Lett. 24: 2113–2116.

    Article  CAS  Google Scholar 

  32. Rostagno, M. A., M. Palma, and C. G. Barroso (2003) Ultrasoundassisted extraction of soy isoflavones. J. Chromatogr. A. 1012: 119–128.

    Article  CAS  Google Scholar 

  33. Hong, J., H. Tamaki, K. Yamamoto, and H. Kumagai (2003) Cloning of a gene encoding thermostable cellobiohydrolase from Thermoascus aurantiacus and its expression in yeast. Appl. Microbiol. Biot. 63: 42–50.

    Article  CAS  Google Scholar 

  34. Verma, M. L., M. Puri, and C. J. Barrow (2016) Recent trends in nanomaterials immobilised enzymes for biofuel production. Crit. Rev. Biotechnol. 36: 108–119.

    Article  CAS  Google Scholar 

  35. Hong, J., X. H. Ye, and Y. H. P. Zhang (2007) Quantitative determination of cellulose accessibility to cellulase based on adsorption of a nonhydrolytic fusion protein containing CBM and GFP with its applications. Langmuir. 23: 12535–12540.

    Article  CAS  Google Scholar 

  36. Murashima, K., A. Kosugi, and R. H. Doi (2003) Solubilization of cellulosomal cellulases by fusion with cellulose-binding domain of noncellulosomal cellulase EngD from Clostridium cellulovorans. Proteins 50: 620–628.

    Article  CAS  Google Scholar 

  37. Chang, M. Y., H. C. Kao, and R. S. Juang (2008) Thermal inactivation and reactivity of beta-glucosidase immobilized on chitosan-clay composite. Int. J. Biol. Macromol. 43: 48–53.

    Article  CAS  Google Scholar 

  38. Richins, R. D., A. Mulchandani, and W. Chen (2000) Expression, immobilization, and enzymatic characterization of cellulosebinding domain-organophosphorus hydrolase fusion enzymes. Biotechnol. Bioeng. 69: 591–596.

    Article  CAS  Google Scholar 

  39. Liggins, J., L. J. C. Bluck, W. A. Coward, and S. A. Bingham (1998) Extraction and quantification of daidzein and genistein in food. Anal. Biochem. 264: 1–7.

    Article  CAS  Google Scholar 

  40. Gueguen, Y., P. Chemardin, A. Arnaud, and P. Galzy (1995) Purification and characterization of an intracellular betaglucosidase from Botrytis cinerea. Enz. Microb. Tech. 17: 900–906.

    Article  CAS  Google Scholar 

  41. Levitsky, V. Y., P. Lozano, and J. L. Iborra (1999) Kinetic analysis of deactivation of immobilized alpha-chymotrypsin by water-miscible organic solvent in kyotorphin synthesis. Biotechnol. Bioeng. 65: 170–175.

    Article  CAS  Google Scholar 

  42. Su, E. Z., T. Xia, L. P. Gao, Q. Y. Dai, and Z. Z. Zhang (2010) Immobilization of beta-glucosidase and its aroma-increasing effect on tea beverage. Food Bioprod. Proc. 88: 83–89.

    Article  CAS  Google Scholar 

  43. Khan, M., Q. Husain, and A. H. Naqvi (2016) Graphene based magnetic nanocomposites as versatile carriers for high yield immobilization and stabilization of beta-galactosidase. Rsc. Adv. 6: 53493–53503.

    Article  CAS  Google Scholar 

  44. Ye, P., J. Jiang, and Z. K. Xu (2007) Adsorption and activity of lipase from Candida rugosa on the chitosan-modified poly (acrylonitrile-co-maleic acid) membrane surface. Colloid Surface B. 60: 62–67.

    Article  CAS  Google Scholar 

  45. Ye, P., Z. K. Xu, J. Wu, C. Innocent, and P. Seta (2006) Nanofibrous poly(acrylonitrile-co-maleic acid) membranes functionalized with gelatin and chitosan for lipase immobilization. Biomat. 27: 4169–4176.

    Article  CAS  Google Scholar 

  46. Celik, A., A. Dincer, and T. Aydemir (2016) Characterization of beta-glucosidase immobilized on chitosan-multiwalled carbon nanotubes (MWCNTS) and their application on tea extracts for aroma enhancement. Int. J. Biol. Macromol. 89: 406–414.

    Article  CAS  Google Scholar 

  47. Rodriguez-Colinas, B., L. Fernandez-Arrojo, P. Santos-Moriano, A. O. Ballesteros, and F. J. Plou (2016) Continuous packed bed reactor with immobilized beta-galactosidase for production of galactooligosaccharides (GOS). Catalysts 6:189.

    Article  Google Scholar 

  48. Warmerdam, A., E. Benjamins, T. F. de Leeuw, T. A. Broekhuis, R. M. Boom, and A. E. M. Janssen (2014) Galacto-oligosaccharide production with immobilized beta-galactosidase in a packed-bed reactor vs. free beta-galactosidase in a batch reactor. Food Bioprod. Proc. 92: 383–392.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiong Hong.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, S., Wang, D. & Hong, J. A Simple Method for Beta-glucosidase Immobilization and Its Application in Soybean Isoflavone Glycosides Hydrolysis. Biotechnol Bioproc E 23, 39–48 (2018). https://doi.org/10.1007/s12257-017-0434-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-017-0434-3

Keywords

Navigation