Skip to main content
Log in

Effective bioremediation of Cadmium (II), nickel (II), and chromium (VI) in a marine environment by using Desulfovibrio desulfuricans

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Sulfate-reducing bacteria play a significant role in the bioremediation of heavy metal-contaminated water. In this study, we report an effective removal method for Cd, Ni, and Cr from a marine environment by using Desulfovibrio desulfuricans, which is a sulfate-reducing bacterium. D. desulfuricans showed stable growth characteristics in highly salinated water, and a strong resistance to these heavy metals. When attempting to drastically increase the removal ratio, the addition of ferrous ion with SO 2−4 was found to be important for the removal of heavy metals from the salinated medium. In addition, the heavy metals tended to be more effectively removed from the medium at 37°C. In the case of heavy metals, 99.9, 98.3, and 74.2% of the Cd, Ni, and Cr, respectively, were effectively removed when present at 100 ppm concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yun, W., Z. Shuzhen, G. Xueyan, and H. Honglin (2008) Adsorption of chromium(III) on lignin. Bioresour. Technol. 99: 7709–7715.

    Article  Google Scholar 

  2. Christelle, H. and F. Peter (2009) Aß-mediated ROS production by Cu ions: Structural insights, mechanisms and relevance to Alzheimer’s disease. Biochim. 91: 1212–1217.

    Article  Google Scholar 

  3. Mohammad, K. M., Z. Zhanxiang, C. Matthew, B. Ashutosh, and J. M. Craig (2014) Zinc and Liver Disease. Nutrit. Clin. Practi. 27: 8–19.

    Article  Google Scholar 

  4. Yu, C., H. G. Joseph, P. Faruque, L. Mengling, S. Vesna, K. Tara, A. Maria, I. Tariqul, A. Alauddin, R. Z. Muhammad, H. Rabiul, S. Golam, L. Diane, V. G. Alexander, and A. Habibul (2011) Arsenic exposure from drinking water and mortality from cardiovascular disease in Bangladesh: Prospective cohort study. Brit. Med. J. 342: d2431.

    Article  Google Scholar 

  5. Kadirvelu, K., K. Thamaraiselvi, and C. Namasivayam (2001) Removal of heavy metals from industrial wastewaters by adsorption onto activated carbon prepared from an agricultural solid waste. Bioresour. Technol. 76: 63–65.

    Article  CAS  Google Scholar 

  6. Kratochvil, D. and B. Volesky (1998) Advances in the biosorption of heavy metals. Trends Biotechnol. 16: 291–300.

    Article  CAS  Google Scholar 

  7. Kumar, A., B. S. Bisht, V. D. Joshi, and T. Dhewa (2011) Review on bioremediation of polluted environment: A management tool. Internat. J. Env. Sci. 1: 1079–1093.

    Google Scholar 

  8. Volesky, B. and Z. R. Holan (1995) Biosorption of heavy metals. Biotechnol. Prog. 11: 235–250.

    Article  CAS  Google Scholar 

  9. Ghosh, A. and P. D. Saha (2013) Optimization of copper bioremediation by Stenotrophomonas maltophilia PD2. J. Env. Chem. Eng. 1: 159–163.

    Article  CAS  Google Scholar 

  10. Wang, J. and C. Chen (2009) Biosorbents for heavy metals removal and their future. Biotechnol. Adv. 27: 195–226.

    Article  Google Scholar 

  11. Muyzer, G. and A. J. M. Stams (2008) The ecology and biotechnology of sulphate-reducing bacteria. Nat. Rev. Microbiol. 6: 441–454.

    CAS  Google Scholar 

  12. Jong, T. and D. L. Parry (2004) Adsorption of Pb(II), Cu(II), Cd(II), Zn(II), Ni(II), Fe(II), and As(V) on bacterially produced metal sulfides. J. Colloid Inter. Sci. 275: 61–71.

    Article  CAS  Google Scholar 

  13. Kim, S. J., K. W. Park, and B. K. Hur (2000) Characteristics of linoleic acid production by marine fungi in sea water media. Kor. J. Biotechnol. Bioeng. 15: 195–200.

    CAS  Google Scholar 

  14. Cabrera, G., R. Perez, J. M. Gomez, A. Abalos, and D. Cantero (2006) Toxic effects of dissolved heavy metals on Desulfovibrio vulgaris and Desulfovibrio sp. strains. J. Hazardous Mat. 135: 40–46.

    Article  CAS  Google Scholar 

  15. Lopes, F. A., P. Morin, R. Oliveira, and L. F. Melob (2005) The influence of nickel on the adhesion ability of Desulfovibrio desulfuricans. Colloids and Surfaces B: Biointerfaces. 46: 127–133.

    Article  CAS  Google Scholar 

  16. Lopes, F. A., P. Morin, R. Oliveira, and L. F. Melob (2006) Interaction of Desulfovibrio desulfuricans biofilms with stainless steel surface and its impact on bacterial metabolism. J. Appl. Microbiol. 101: 1087–1095.

    Article  CAS  Google Scholar 

  17. Remy, M., C. Bernard, and W. Michel (2001) Effect of ferrous ion availability on growth of a corroding sulfate-reducing bacterium. Internat. Biodeteriorat. Biodegrad. 47: 125–131.

    Article  Google Scholar 

  18. Okabe, S., P. H. Nielsen, and W. G. Charcklis (1992) Factors affecting microbial sulfate reduction by Desulfovibrio desulfuricans in continuous culture: Limiting nutrients and sulfide concentration. Biotechnol. Bioeng. 40: 725–734.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Young-Kee Kim or Byung-Keun Oh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joo, J.o., Choi, JH., Kim, I.H. et al. Effective bioremediation of Cadmium (II), nickel (II), and chromium (VI) in a marine environment by using Desulfovibrio desulfuricans . Biotechnol Bioproc E 20, 937–941 (2015). https://doi.org/10.1007/s12257-015-0287-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-015-0287-6

Keywords

Navigation