Skip to main content

Advertisement

Log in

Tumor vascular infarction: prospects and challenges

  • Review Article
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Induction of thrombosis in tumor vasculature represents an appealing strategy for combating cancer. Formation of fibrin clots may be sufficient to occlude the blood vessels that feed tumor cells, contributing to massive ischemia, vascular infarction, and the subsequent necrosis and apoptosis of neoplastic cells. This approach called as tumor vascular infarction was pioneered by Huang et al. (Science 275:547–550, 1997). Since then, different vascular targeting moieties were linked to a truncated form of human tissue factor (tTF), to generate coaguligands with selective thrombotic activities on tumor neovasculature. In contrast to the wide clinical application of angiogenesis inhibitors and tumor vascular disrupting agents, tTF-NGR is the only example of clinically tested coaguligands. Notably, among these three tumor vascular targeting approaches, tumor vascular infarction is the only modality manifesting long-term curative potential in mice. Translation of this worthy approach has been limited, as induction of thrombosis by TF fusion proteins is leaky. In this review, we describe the clinical significance of tumor vascular infarction, highlight its advantages and disadvantages, and propose a novel strategy for expediting its translation to clinical settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AIs:

Angiogenesis inhibitors

VTAs:

Vascular targeting agents

VDAs:

Vascular disrupting agents

IFP:

Interstitial fluid pressure

STVTs:

Selective tumor vascular thrombogens

PR:

Partial tumor remission

CR:

Complete tumor remission

VCAM-1:

Vascular cell adhesion molecule

PS:

Phosphatidylserine

PSMA:

Prostate-specific membrane antigen

S.C:

Subcutaneous

i.v:

Intravascular

GFP:

Green fluorescent protein

HAPs:

Hypoxia-activated prodrugs

NG2:

Nerve/glial antigen 2

References

  1. Auerbach W, Auerbach R. Angiogenesis inhibition: a review. Pharmacol Ther. 1994;63:265–311.

    Article  CAS  PubMed  Google Scholar 

  2. Augustin HG. Antiangiogenic tumour therapy: will it work? TiPS. 1998;19:216–22.

    CAS  PubMed  Google Scholar 

  3. Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature (London). 2000;407:249–57.

    Article  CAS  Google Scholar 

  4. Cesca M, Bizzaro F, Zucchetti M, Giavazzi R. Tumor delivery of chemotherapy combined with inhibitors of angiogenesis and vascular targeting agents. Frontiers oncology. 2013;3:1–7.

    Article  Google Scholar 

  5. Fujita K, Sano D, Kimura M, Yamashita K, Kawakami M, Ishiguro Y, et al. Anti-tumor effects of bevacizumab in combination with paclitaxel on head and neck squamous cell carcinoma. Oncol Lett. 2007;18:47–51.

    CAS  Google Scholar 

  6. Gaya AM, Rustin GJ. Vascular disrupting agents: a new class of drug in cancer therapy. Clin Oncol (R Coll Radiol). 2005;17(4):277–90.

    Article  CAS  Google Scholar 

  7. Huang X, Molema G, King S, Watkins L, Edgington TS, Thorpe PE. Tumor infarction in mice by antibody-directed targeting of tissue factor to tumor vasculature. Science. 1997;275(5299):547–50.

    Article  CAS  PubMed  Google Scholar 

  8. Liang W, Ni Y, Chen F. Tumor resistance to vascular disrupting agents: mechanisms, imaging, and solutions. Oncotarget. 2016;7:15444–59.

    PubMed  PubMed Central  Google Scholar 

  9. Tozer GM, Kanthou C, Baguley BC. Disrupting tumour blood vessels. Nat Rev Cancer. 2005;5(6):423–35. doi:10.1038/nrc1628.

    Article  CAS  PubMed  Google Scholar 

  10. Wahl O, Oswald M, Tretzel L, Herres E, Arend J, Efferth T. Inhibition of tumor angiogenesis by antibodies, synthetic small molecules and natural products. Curr Med Chem. 2011;18:3136–55.

    Article  CAS  PubMed  Google Scholar 

  11. Wu XY, Ma W, Gurung K, Guo CH. Mechanisms of tumor resistance to small -molecule vascular disrupting agents: treatment and rationale of combination therapy. J Formos Med Assoc. 2013;112(112):115–24.

    Article  CAS  PubMed  Google Scholar 

  12. Teicher BA. Flipping the wound that doesn’t heal: the upside of coagulation in cancer. Blood. 2009;113(20):4826–8.

    Article  Google Scholar 

  13. van Beijnum JR, Nowak-Sliwinska P, Huijbers EJ, Thijssen VL, Griffioen AW. The great escape; the hallmarks of resistance to antiangiogenic therapy. Pharmacol Rev. 2015;67(2):441–61.

    Article  PubMed  Google Scholar 

  14. De Gramont A, Van Cutsem E, Schmoll HJ, Tabernero J, Clarke S, Moore MJ, et al. Bevacizumab plus oxaliplatin-based chemotherapy as adjuvant treatment for colon cancer (AVANT): a phase 3 randomised controlled trial. Lancet Oncol. 2012;13(12):1225–33.

    Article  PubMed  Google Scholar 

  15. Fukumura D, Jain RK. Tumor microvasculature and microenvironment: targets for anti-angiogenesis and normalization. Microvasc Res. 2007;74(2–3):72–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. El-Kenawi AE, El-Remessy AB. Angiogenesis inhibitors in cancer therapy: mechanistic perspective on classification and treatment rationales. Br J Pharmacol. 2013;170:712–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Patterson DM, Rustin GJS. Vascular Damaging Agents. Clinical Oncology. 2007;19(443):e56.

    Google Scholar 

  18. Djeha H, Shah K, McGeever G, Dobinson D, Green C. Combination of the vascular disrupting agent DMXAA (AS1404) with bevacizumab and paclitaxel produces synergistic antitumor activity in lung cancer xenografts. Proc Amer Assoc Cancer Res. 2007;48 (abstract 4642).

  19. Wang Z, Dabrosin C, Yin X, Fuster MM, Arreola A, Rathmell WK, et al. Broad targeting of angiogenesis for cancer prevention and therapy. Semin Cancer Biol. 2015;35(Suppl):S224–43.

    Article  PubMed  PubMed Central  Google Scholar 

  20. McKeage MJ, Baguley BC. Disrupting established tumor blood vessels: an emerging therapeutic strategy for cancer. Cancer. 2010;116(8):1859–71.

    Article  CAS  PubMed  Google Scholar 

  21. Denekamp J. Vascular attack as a therapeutic strategy for cancer. Cancer Metastasis Rev. 1990;9:267–82.

    Article  CAS  PubMed  Google Scholar 

  22. Thorpe PE. Vascular targeting agents as cancer therapeutics. Clin Cancer Res. 2004;10(2):415–27.

    Article  PubMed  Google Scholar 

  23. Kessler T, Bieker R, Padro T, Schwoppe C, Persigehl T, Bremer C, et al. Inhibition of tumor growth by RGD peptide-directed delivery of truncated tissue factor to the tumor vasculature. Clin Cancer Res. 2005;11(17):6317–24.

    Article  CAS  PubMed  Google Scholar 

  24. Fabbrini M, Trachsel E, Soldani P, Bindi S, Alessi P, Bracci L, et al. Selective occlusion of tumor blood vessels by targeted delivery of an antibody-photosensitizer conjugate. Int J Cancer. 2006;118(7):1805–13.

    Article  CAS  PubMed  Google Scholar 

  25. Su MY, Samoszuk MK, Wang J, Nalcioglu O. Assessment of protamine—induced thrombosis of tumor vessels for cancer therapy using dynamic contrast-enhanced MRI. NMR Biomed. 2002;15:106–13.

    Article  CAS  PubMed  Google Scholar 

  26. Guba M, Yezhelyev M, Eichhorn ME, Schmid G, Ischenko I, Papyan A, et al. Rapamycin induces tumor-specific thrombosis via tissue factor in the presence of VEGF. Blood. 2005;105(11):4463–9.

    Article  CAS  PubMed  Google Scholar 

  27. Nilsson F, Kosmehl H, Zardi L, Neri D. Targeted delivery of tissue factor to the ED-B domain of fibronectin, a marker of angiogenesis, mediates the infarction of solid tumors in mice. Cancer Res. 2001;61:711–6.

    CAS  PubMed  Google Scholar 

  28. Ran S, Gao B, Duffy S, Watkins L, Rote N, Thorp PE. Infarction of solid Hodgkin’s tumors in mice by antibody-directed targeting of tissue factor to tumor vasculature. Cancer Res. 1998;58:4646–53.

    CAS  PubMed  Google Scholar 

  29. Liu C, Huang H, Donate F, Dickinson C, Santucci R, El-Sheikh A, et al. Prostate-specific membrane antigen directed selective thrombotic infarction of tumors. Cancer Res. 2002;62(19):5470–5.

    CAS  PubMed  Google Scholar 

  30. Hu P, Yan J, Sharifi J, Bai T, Khawli LA, Epstein AL. Comparison of three different targeted tissue factor fusion proteins for inducing tumor vessel thrombosis. Cancer Res. 2003;63(16):5046–53.

    CAS  PubMed  Google Scholar 

  31. Bieker R, Kessler T, Schwoppe C, Padro T, Persigehl T, Bremer C, et al. Infarction of tumor vessels by NGR-peptide-directed targeting of tissue factor: experimental results and first-in-man experience. Blood. 2009;113(20):5019–27.

    Article  CAS  PubMed  Google Scholar 

  32. Corti A, Curnis F. Tumor vasculature targeting through NGR peptide-based drug delivery systems. Curr Pharm Biotechnol. 2011;12(8):1128–34.

    Article  CAS  PubMed  Google Scholar 

  33. Dreischaluck J, Schwoppe C, Spiekers T, Kessler T, Tiemann K, Liersch R, et al. Vascular infarction by subcutaneous application of tissue factor targeted to tumor vessels with NGR-peptides: activity and toxicity profile. Int J Oncol. 2010;37:1389–97.

    PubMed  Google Scholar 

  34. Huang FY, Li YN, Wang H, Huang YH, Lin YY, Tan GH. A fusion protein containing murine vascular endothelial growth factor and tissue factor induces thrombogenesis and suppression of tumor growth in a colon carcinoma model. J Zhejiang Univ Sci B. 2008;9(8):602–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Huang ZJ, Zhao Y, Luo WY, You J, Li SW, Yi WC, et al. Targeting the vasculature of colorectal carcinoma with a fused protein of (RGD)(3)-tTF. Sci World J. 2013;2013:637086.

    Google Scholar 

  36. Brand C, Schliemann C, Ring J, Kessler T, Bäumer S, Angenendt L, et al. NG2 proteoglycan as a pericyte target for anticancer therapy by tumor vessel infarction with retargeted tissue factor. Oncotarget. 2016;7(6):6774–89.

    PubMed  PubMed Central  Google Scholar 

  37. Giuliano S, Pagès G. Mechanisms of resistance to anti-angiogenesis therapies. Biochimie. 2013;95:1110e9.

    Article  Google Scholar 

  38. Vasudev NS, Reynolds AR. Anti-angiogenic therapy for cancer: current progress, unresolved questions and future directions. Angiogenesis. 2014;17:471–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Geddings JE, Mackman N. Tumor-derived tissue factor—positive microparticles and venous thrombosis in cancer patients. Blood. 2013;122(11):1873–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zwicker JI, Liebman HA, Neuberg D, Lacroix R, Bauer KA, Furie BC, et al. Tumor-derived tissue factor-bearing microparticles are associated with venous thromboembolic events in malignancy. Clin Cancer Res. 2009;15(22):6830–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Camerer E, Huang W, Coughlin SR. Tissue factor- and factor X-dependent activation of protease-activated receptor 2 by factor VIIa. Proc Natl Acad Sci USA. 2000;97(10):5255–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chen J, Bierhaus A, Schiekofer S, Andrassy M, Chen B, Stern DM, et al. Tissue factor–a receptor involved in the control of cellular properties, including angiogenesis. Thromb Haemost. 2001;86(1):334–45.

    CAS  PubMed  Google Scholar 

  43. Jiang X, Bailly MA, Panetti TS, Cappello M, Konigsberg WH, Bromberg ME. Formation of tissue factor-factor VIIa-factor Xa complex promotes cellular signaling and migration of human breast cancer cells. J Thromb Haemost. 2004;2(1):93–101.

    Article  CAS  PubMed  Google Scholar 

  44. Yokota N, Zarpellon A, Chakrabarty S, Bogdanov VY, Gruber A, Castellino FJ, et al. Contributions of thrombin targets to tissue factor-dependent metastasis in hyperthrombotic mice. J Thromb Haemost. 2014;12(1):71–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Patyar S, Joshi R, Prasad Byrav D, Prakash A, Medhi B, Das B. Bacteria in cancer therapy: a novel experimental strategy. J Biomed Sci. 2010;17(21):1–9.

    Google Scholar 

  46. Suzuki M, Mao L, Inouye M. Single protein production (SPP) system in Escherichia coli. Nat Protocol. 2007;2(7):1802–10.

    Article  CAS  Google Scholar 

  47. Zhang Y, Zhang J, Hara H, Kato I, Inouye M. Insights into the mRNA cleavage mechanism by MazF, an mRNA interferase. J Biol Chem. 2005;280:3143–50.

    Article  CAS  PubMed  Google Scholar 

  48. Zhang Y, Zhang J, Hoeflich KP, Ikura M, Qing G, Inouye M. MazF cleaves cellular mRNAs specifically at ACA to block protein synthesis in Escherichia coli. Mol Cell. 2003;12:913–23.

    Article  CAS  PubMed  Google Scholar 

  49. Muñoz-Gómez AJ, Santos-Sierra S, Berzal-Herranz A, Lemonnier M, Díaz-Orejas R. Insights into the specificity of RNA cleavage by the Escherichia coli MazF toxin. FEBS Lett. 2003;567:316–20.

    Article  Google Scholar 

  50. Okamoto M, Chono H, Kawano Y, Saito N, Tsuda H, Inoue K, et al. Sustained inhibition of HIV-1 replication by conditional expression of the E. coli-derived endoribonuclease MazF in CD4+ T cells. Hum Gene Ther Methods. 2013;24(2):94–103.

    Article  CAS  PubMed  Google Scholar 

  51. Saito N, Chono H, Shibata H, Ageyama N, Yasutomi Y, Mineno J. CD4(+) T Cells Modified by the Endoribonuclease MazF are safe and can persist in SHIV-infected Rhesus Macaques. Mol Therapy Nucleic Acids. 2014;3(6):e168.

    Article  CAS  Google Scholar 

  52. Inouye M. The discovery of mRNA interferases: implication in bacterial physiology and application to biotechnology. J Cell Physiol. 2006;209:670–6.

    Article  CAS  PubMed  Google Scholar 

  53. Shimazu T, Mirochnitchenko O, Phadtare S, Inouye M. Regression of solid tumors by induction of MazF, a bacterial mRNA endoribonuclease. J Mol Microbiol Biotechnol. 2014;24(4):228–33.

    Article  CAS  PubMed  Google Scholar 

  54. Bermudes D, Zheng L, King IC. Live bacteria as anticancer agents and tumor-selective protein delivery vectors. Curr Opin Drug Discov Dev. 2002;5(2):194–9.

    CAS  Google Scholar 

  55. Engelberg-Kulka H, Hazan R, Amitai S. mazEF. A chromosomal toxin-antitoxin module that triggers programmed cell death in bacteria. J Cell Sci. 2005;118:4327–32.

    Article  CAS  PubMed  Google Scholar 

  56. Hatefi A, Canine BF. Perspectives in vector development for systemic cancer gene therapy. Gene Ther Mol Biol. 2009;13(A):15–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhao M, Yang M, Li XM, Jiang P, Baranov E, Li S, et al. Tumor-targeting bacterial therapy with amino acid auxotrophs of GFP-expressing Salmonella typhimurium. PNAS. 2005;102(3):755–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kim S, Castro F, Paterson Y, Gravekamp C. High efficacy of a Listeria based vaccine against metastatic breast cancer reveals a dual mode of action. Cancer Res. 2009;69(14):5860–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Cheng CMLY, Chuang KH, Hung WC, Shiea J, Su YC, et al. Tumor-targeting prodrug-activating bacteria for cancer therapy. Cancer Gene Ther. 2008;15:393–401.

    Article  CAS  PubMed  Google Scholar 

  60. Friedlos F, Lehouritis P, Ogilvie L, Hedley D, Davies L, Bermudes D, et al. Attenuated Salmonella targets prodrug activating enzyme carboxypeptidase G2 to mouse melanoma and human breast and colon carcinomas for effective suicide gene therapy. Clin Cancer Res. 2008;14:4259–66.

    Article  CAS  PubMed  Google Scholar 

  61. Dang LH, Bettegowda C, Huso DL, Kinzler KW, Vogelstein B. Combination bacteriolytic therapy for the treatment of experimental tumors. PNAS. 2001;98(26):5155–15160.

    Article  Google Scholar 

Download references

Acknowledgment

The authors would like to thank Iranian National Science Foundation ((INSF), grant number 90007316) for financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nosratollah Zarghami.

Ethics declarations

Conflict of interest

All authors declare no conflict of interests.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jahanban-Esfahlan, R., Seidi, K. & Zarghami, N. Tumor vascular infarction: prospects and challenges. Int J Hematol 105, 244–256 (2017). https://doi.org/10.1007/s12185-016-2171-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-016-2171-3

Keywords

Navigation