Skip to main content

Advertisement

Log in

Plant Polyphenols: Potential Antidotes for Lead Exposure

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Lead is one of the most common heavy metal elements and has high biological toxicity. Long-term lead exposure will induce the contamination of animal feed, water, and food, which can cause chronic lead poisoning including nephrotoxicity, hepatotoxicity, neurotoxicity, and reproductive toxicity in humans and animals. In the past few decades, lead has caused widespread concern because of its significant threat to health. A large number of in vitro and animal experiments have shown that oxidative stress plays a key role in lead toxicity, and endoplasmic reticulum (ER) stress and the mitochondrial apoptosis pathway can also be induced by lead toxicity. Therefore, plant polyphenols have attracted attention, with their advantages of being natural antioxidants and having low toxicity. Plant polyphenols can resist lead toxicity by chelating lead with their special chemical molecular structure. In addition, scavenging active oxygen and improving the level of antioxidant enzymes, anti-inflammatory, and anti-apoptosis are also the key to relieving lead poisoning by plant polyphenols. Various plant polyphenols have been suggested to be useful in alleviating lead toxicity in animals and humans and are believed to have good application prospects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ALA:

δ-Aminolevulinic acid

AKT:

Protein kinase B

ATF4:

Activating transcription factor 4

Bak:

Bcl-2 homologous antagonist killer

CAT:

Catalase

CHOP:

CCAAT/enhancer-binding protein (C/EBP) homologous protein

EGCG:

Epigallocatechin gallate

ER:

Endoplasmic reticulum

GR:

Glutathione reductase

GRP78:

Glucose regulation protein 78

GSH:

Glutathione

GSH-Px:

Glutathione peroxidase

GSK-3β:

Glycogen synthase kinase 3β

GST:

Glutathione-S-transferase

IL-1β:

Interleukin-1β

JNK:

c-Jun N-terminal kinase

MAPK:

Mitogen-activated protein kinase

MDA:

Malondialdehyde

NF-κB:

Nuclear transcription factor-κB

Nrf2:

Nuclear factor erythroid-2-related factor2

PERK:

Protein kinase RNA-like ER kinase

PI3K:

Phosphatidylinositol 3-kinase

ROS:

Reactive oxygen species

TNF-α:

Tumor necrosis factor-alpha

UPR:

Unfolded protein response

References

  1. Li J, Xu Y, Wang LQ, Li FD (2019) Heavy metal occurrence and risk assessment in dairy feeds and manures from the typical intensive dairy farms in China. Environ Sci Pollut Res 26(7):6348–6358. https://doi.org/10.1007/s11356-019-04125-1

    Article  CAS  Google Scholar 

  2. Rehman K, Fatima F, Waheed I, Akash MSH (2018) Prevalence of exposure of heavy metals and their impact on health consequences. J Cell Biochem 119(1):157–184. https://doi.org/10.1002/jcb.26234

    Article  CAS  PubMed  Google Scholar 

  3. Cheng D, Li H, Zhou JP, Wang S (2019) Chlorogenic acid relieves lead-induced cognitive impairments and hepato-renal damage via regulating the dysbiosis of the gut microbiota in mice. Food Funct 10(2):681–690. https://doi.org/10.1039/c8fo01755g

    Article  CAS  PubMed  Google Scholar 

  4. Chen C, Lin BB, Qi SS, He J, Zheng HX (2019) Protective effects of salidroside on Lead acetate-induced oxidative stress and hepatotoxicity in Sprague-Dawley rats. Biol Trace Elem Res 191(2):426–434. https://doi.org/10.1007/s12011-019-1635-8

    Article  CAS  PubMed  Google Scholar 

  5. Farmer AA, Farmer AM (2000) Concentrations of cadmium, lead and zinc in livestock feed and organs around a metal production centre in eastern Kazakhstan. Sci Total Environ 257(1):53–60. https://doi.org/10.1016/S0048-9697(00)00497-6

    Article  CAS  PubMed  Google Scholar 

  6. Yabe J, Nakayama SMM, Nakata H, Toyomaki H, Yohannes YB, Muzandu K, Kataba A, Zyambo G, Hiwatari M, Narita D, Yamada D, Hangoma P, Munyinda NS, Mufune T, Ikenaka Y, Choongo K, Ishizuka M (2020) Current trends of blood lead levels, distribution patterns and exposure variations among household members in Kabwe. Zambia Chemosphere 243. https://doi.org/10.1016/j.chemosphere.2019.125412

  7. Cowan V, Blakley B (2016) Characterizing 1341 cases of veterinary toxicoses confirmed in Western Canada: a 16-year retrospective study. Can Vet J-Rev Vet Can 57(1):53–58

    Google Scholar 

  8. Yin K, Yang ZJ, Gong YZ, Wang DX, Lin HJ (2019) The antagonistic effect of Se on the Pb-weakening formation of neutrophil extracellular traps in chicken neutrophils. Ecotoxicol Environ Saf 173:225–234. https://doi.org/10.1016/j.ecoenv.2019.02.033

    Article  CAS  PubMed  Google Scholar 

  9. Huang H, An Y, Jiao WY, Wang JH, Li S, Teng XH (2018) CHOP/caspase-3 signal pathway involves in mitigative effect of selenium on lead-induced apoptosis via endoplasmic reticulum pathway in chicken testes. Environ Sci Pollut Res 25(19):18838–18845. https://doi.org/10.1007/s11356-018-1950-1

    Article  CAS  Google Scholar 

  10. Mohamed OI, El-Nahas AF, El-Sayed YS, Ashry KM (2016) Ginger extract modulates Pb-induced hepatic oxidative stress and expression of antioxidant gene transcripts in rat liver. Pharm Biol 54(7):1164–1172. https://doi.org/10.3109/13880209.2015.1057651

    Article  CAS  PubMed  Google Scholar 

  11. Romero A, Ramos E, de Los RC, Egea J, del Pino J, Reiter RJ (2014) A review of metal-catalyzed molecular damage: protection by melatonin. J Pineal Res 56(4):343–370. https://doi.org/10.1111/jpi.12132

    Article  CAS  PubMed  Google Scholar 

  12. Moneim AEA (2016) Indigofera oblongifolia prevents Lead acetate-induced hepatotoxicity, oxidative stress, fibrosis and apoptosis in rats. PLoS One 11(7):e0158965. https://doi.org/10.1371/journal.pone.0158965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kim JJ, Kim YS, Kumar V (2019) Heavy metal toxicity: An update of chelating therapeutic strategies. J Trace Elem Med Biol 54:226–231. https://doi.org/10.1016/j.jtemb.2019.05.003

    Article  CAS  PubMed  Google Scholar 

  14. Andersen O, Aaseth J (2016) A review of pitfalls and progress in chelation treatment of metal poisonings. J Trace Elem Med Biol 38:74–80. https://doi.org/10.1016/j.jtemb.2016.03.013

    Article  CAS  PubMed  Google Scholar 

  15. Bjorklund G, Mutter J, Aaseth J (2017) Metal chelators and neurotoxicity: lead, mercury, and arsenic. Arch Toxicol 91(12):3787–3797. https://doi.org/10.1007/s00204-017-2100-0

    Article  CAS  PubMed  Google Scholar 

  16. Kiziltas H, Ekin S, Bayramoglu M, Akbas E, Oto G, Yildirim S, Ozgokce F (2017) Antioxidant properties of Ferulago angulata and its hepatoprotective effect against N-nitrosodimethylamine-induced oxidative stress in rats. Pharm Biol 55(1):888–897. https://doi.org/10.1080/13880209.2016.1270974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rathbone J, Zhang L, Zhang M, Xia J, Liu X, Yang Y, Adams CE (2007) Chinese herbal medicine for schizophrenia - Cochrane systematic review of randomised trials. Br J Psychiatry 190:379–384. https://doi.org/10.1192/bjp.bp.106.026880

    Article  PubMed  Google Scholar 

  18. Zhang L, Lv H, Li Y, Dong N, Bi C, Shan A, Wu Z, Shi B (2020) Sodium houttuyfonate enhances the intestinal barrier and attenuates inflammation induced by Salmonella typhimurium through the NF-kappaB pathway in mice. Int Immunopharmacol 89 (Pt A):107058-107058. https://doi.org/10.1016/j.intimp.2020.107058

  19. Bohn T, McDougall GJ, Alegria A, Alminger M, Arrigoni E, Aura A-M, Brito C, Cilla A, El SN, Karakaya S, Martinez-Cuesta MC, Santos CN (2015) Mind the gapdeficits in our knowledge of aspects impacting the bioavailability of phytochemicals and their metabolitesa position paper focusing on carotenoids and polyphenols. Mol Nutr Food Res 59(7):1307–1323. https://doi.org/10.1002/mnfr.201400745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cao H, Ou JY, Chen L, Zhang YB, Szkudelski T, Delmas D, Daglia M, Xiao JB (2019) Dietary polyphenols and type 2 diabetes: human study and clinical trial. Crit Rev Food Sci Nutr 59(20):3371–3379. https://doi.org/10.1080/10408398.2018.1492900

    Article  CAS  PubMed  Google Scholar 

  21. Hussain T, Tan B, Yin YL, Blachier F, Tossou MCB, Rahu N (2016) Oxidative stress and inflammation: what polyphenols can do for us? Oxidative Med Cell Longev 2016. https://doi.org/10.1155/2016/7432797, 2016, 1, 9

  22. Fantini M, Benvenuto M, Masuelli L, Frajese GV, Tresoldi I, Modesti A, Bei R (2015) In vitro and in vivo antitumoral effects of combinations of polyphenols, or polyphenols and anticancer drugs: perspectives on cancer treatment. Int J Mol Sci 16(5):9236–9282. https://doi.org/10.3390/ijms16059236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ben-Shabat S, Yarmolinsky L, Porat D, Dahan A (2020) Antiviral effect of phytochemicals from medicinal plants: applications and drug delivery strategies. Drug Deliv Transl Re 10(2):354–367. https://doi.org/10.1007/s13346-019-00691-6

  24. Shi L, Zheng L, Zhao C, Jin Q, Wang X (2019) Chemical composition and antioxidant capacity of extracts from the whole berry, pulp and seed of Hippophae? rhamnoides ssp. yunnanensis. Nat Prod Res 33(24):3596–3600. https://doi.org/10.1080/14786419.2018.1488703

    Article  CAS  PubMed  Google Scholar 

  25. Rzepecka-Stojko A, Stojko J, Kurek-Gorecka A, Gorecki M, Kabala-Dzik A, Kubina R, Mozdzierz A, Buszman E (2015) Polyphenols from bee pollen: structure, absorption, metabolism and biological activity. Molecules 20(12):21732–21749. https://doi.org/10.3390/molecules201219800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Piccolella S, Crescente G, Candela L, Pacifico S (2019) Nutraceutical polyphenols: new analytical challenges and opportunities J Pharm Biomed Anal 175. https://doi.org/10.1016/j.jpba.2019.07.022175

  27. Soliman MM, Baiomy AA, Yassin MH (2015) Molecular and histopathological study on the ameliorative effects of curcumin against lead acetate-induced hepatotoxicity and nephrototoxicity in Wistar rats. Biol Trace Elem Res 167(1):91–102. https://doi.org/10.1007/s12011-015-0280-0

    Article  CAS  PubMed  Google Scholar 

  28. Wang JC, Yang ZJ, Lin L, Zhao ZQ, Liu ZP, Liu XZ (2012) Protective effect of naringenin against lead-induced oxidative stress in rats. Biol Trace Elem Res 146(3):354–359. https://doi.org/10.1007/s12011-011-9268-6

    Article  CAS  PubMed  Google Scholar 

  29. Al-Megrin WA, Alkhuriji AF, Yousef AS, Metwally DM, Habotta OA, Kassab RB, Moneim AEA, El-Khadragy MF (2020) Antagonistic efficacy of luteolin against lead acetate exposure-associated with hepatotoxicity is mediated via antioxidant, anti-inflammatory, and anti-apoptotic activities. Antioxidants 9(1). https://doi.org/10.3390/antiox9010010

  30. Liu CM, Ma JQ, Sun YZ (2011) Protective role of puerarin on lead-induced alterations of the hepatic glutathione antioxidant system and hyperlipidemia in rats. Food Chem Toxicol 49(12):3119–3127. https://doi.org/10.1016/j.fct.2011.09.007

    Article  CAS  PubMed  Google Scholar 

  31. Ansar S, AlGhosoon HT, Hamed S (2015) Evaluation of protective effect of rutin on lead acetate-induced testicular toxicity in Wistar rats. Toxin Rev 34(4):195–199. https://doi.org/10.3109/15569543.2015.1136333

    Article  CAS  Google Scholar 

  32. Bischoff K, Priest H, Mount-Long A (2010) Animals as sentinels for human lead exposure: a case report. J Med Toxicol 6(2):185–189

    Article  Google Scholar 

  33. Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ (2012) Heavy metals toxicity and the environment. EXS 101(101):133

    PubMed  PubMed Central  Google Scholar 

  34. Alvarez-Lloret P, Ming Lee C, Ines Conti M, Romina Terrizzi A, Gonzalez-Lopez S, Pilar Martinez M (2017) Effects of chronic lead exposure on bone mineral properties in femurs of growing rats. Toxicology 377:64–72. https://doi.org/10.1016/j.tox.2016.11.017

    Article  CAS  PubMed  Google Scholar 

  35. Abd El-Hack ME, Abdelnour SA, Abd El-Moneim AE-ME, Arif M, Khafaga A, Shaheen H, Samak D, Swelum AA (2019) Putative impacts of phytogenic additives to ameliorate lead toxicity in animal feed. Environ Sci Pollut Res 26(23):23209–23218. https://doi.org/10.1007/s11356-019-05805-8

    Article  CAS  Google Scholar 

  36. Shafiekhani M, Ommati MM, Azarpira N, Heidari R, Salarian AA (2019) Glycine supplementation mitigates lead-induced renal injury in mice. J Exp Pharmacol 11:15–22. https://doi.org/10.2147/jep.s190846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Patra RC, Rautray AK, Swarup D (2011) Oxidative stress in lead and cadmium toxicity and its amelioration. Vet Med Int 2011:457327–457327. https://doi.org/10.4061/2011/457327

    Article  Google Scholar 

  38. Su P, Zhang J, Wang S, Aschner M, Cao Z, Zhao F, Wang D, Chen J, Luo W (2016) Genistein alleviates lead-induced neurotoxicity in vitro and in vivo: involvement of multiple signaling pathways. Neurotoxicology 53:153–164. https://doi.org/10.1016/j.neuro.2015.12.019

    Article  CAS  PubMed  Google Scholar 

  39. S C, J L, X S, S H, L Z (2019) Allicin alleviated learning and memory deficits caused by lead exposure at developmental stage. Life Sci 231:116532. https://doi.org/10.1016/j.lfs.2019.06.007

  40. Kasai S, Shimizu S, Tatara Y, Mimura J, Itoh K (2020) Regulation of Nrf2 by mitochondrial reactive oxygen species in physiology and pathology. Biomolecules 10(2). https://doi.org/10.3390/biom10020320

  41. Chandel NS (2018) Mitochondria: back to the future. Nat Rev Mol Cell Biol 19(2):76–76. https://doi.org/10.1038/nrm.2017.133

    Article  CAS  PubMed  Google Scholar 

  42. Martinez-Haro M, Green AJ, Mateo R (2011) Effects of lead exposure on oxidative stress biomarkers and plasma biochemistry in waterbirds in the field. Environ Res 111(4):530–538. https://doi.org/10.1016/j.envres.2011.02.012

    Article  CAS  PubMed  Google Scholar 

  43. Winiarska-Mieczan A (2018) Protective effect of tea against lead and cadmium-induced oxidative stress a review. Biometals 31(6):909–926. https://doi.org/10.1007/s10534-018-0153-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Okesola MA, Ajiboye BO, Oyinloye BE, Ojo OA (2019) Neuromodulatory effects of ethyl acetate fraction of Zingiber officinale Roscoe extract in rats with lead-induced oxidative stress. Journal of Integrative Medicine-Jim 17(2):125–131. https://doi.org/10.1016/j.joim.2019.01.002

    Article  Google Scholar 

  45. Flora G, Gupta D, Tiwari A (2012) Toxicity of lead: a review with recent updates. Interdiscip Toxicol 5(2):47–58. https://doi.org/10.2478/v10102-012-0009-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Liu C-M, Yang H-X, Ma J-Q, Yang W, Feng Z-J, Sun J-M, Cheng C, Li J, Jiang H (2018) Role of AMPK pathway in lead-induced endoplasmic reticulum stress in kidney and in paeonol-induced protection in mice. Food Chem Toxicol 122:87–94. https://doi.org/10.1016/j.fct.2018.10.024

    Article  CAS  PubMed  Google Scholar 

  47. Kamarehei M, Ardestani SK, Firouzi M, Zahednasab H, Keyvani H, Harirchian MH (2019) Increased expression of endoplasmic reticulum stress-related caspase-12 and CHOP in the hippocampus of EAE mice. Brain Res Bull 147:174–182. https://doi.org/10.1016/j.brainresbull.2019.01.020

    Article  CAS  PubMed  Google Scholar 

  48. Mollazadeh H, Atkin SL, Butler AE, Ruscica M, Sirtori CR, Sahebkar A (2018) The effect of statin therapy on endoplasmic reticulum stress. Pharmacol Res 137:150–158. https://doi.org/10.1016/j.phrs.2018.10.006

    Article  CAS  PubMed  Google Scholar 

  49. Lin X, Zhao Y, Li S (2017) Astaxanthin attenuates glutamate-induced apoptosis via inhibition of calcium influx and endoplasmic reticulum stress. Eur J Pharmacol 806:43–51. https://doi.org/10.1016/j.ejphar.2017.04.008

    Article  CAS  PubMed  Google Scholar 

  50. Wang H, Wang Z-K, Jiao P, Zhou X-P, Yang D-B, Wang Z-Y, Wang L (2015) Redistribution of subcellular calcium and its effect on apoptosis in primary cultures of rat proximal tubular cells exposed to lead. Toxicology 333:137–146. https://doi.org/10.1016/j.tox.2015.04.015

    Article  CAS  PubMed  Google Scholar 

  51. Qian YC, Tiffany-Castiglioni E (2003) Lead-induced endoplasmic reticulum (ER) stress responses in the nervous system. Neurochem Res 28(1):153–162. https://doi.org/10.1023/a:1021664632393

    Article  CAS  PubMed  Google Scholar 

  52. Wang MG, Fan RF, Li WH, Zhang D, Yang DB, Wang ZY, Wang L (2019) Activation of PERK-eIF2 alpha-ATF4-CHOP axis triggered by excessive ER stress contributes to lead-induced nephrotoxicity. Biochim Biophys Acta-Mol Cell Res 1866(4):713–726. https://doi.org/10.1016/j.bbamcr.2018.12.002

    Article  CAS  PubMed  Google Scholar 

  53. Xu J, Ji LD, Xu LH (2006) Lead-induced apoptosis in PC 12 cells: involvement of p53, Bcl-2 family and caspase-3. Toxicol Lett 166(2):160–167. https://doi.org/10.1016/j.toxlet.2006.06.643

    Article  CAS  PubMed  Google Scholar 

  54. de Souza ID, de Andrade AS, Siqueira Dalmolin RJ (2018) Lead-interacting proteins and their implication in lead poisoning. Crit Rev Toxicol 48(5):375–386. https://doi.org/10.1080/10408444.2018.1429387

    Article  CAS  PubMed  Google Scholar 

  55. Kourosh-Arami M, Hosseini N, Mohsenzadegan M, Komaki A, Joghataei MT (2020) Neurophysiologic implications of neuronal nitric oxide synthase. Rev Neurosci 31(6):617–636. https://doi.org/10.1515/revneuro-2019-0111

    Article  CAS  PubMed  Google Scholar 

  56. Villalobo A (2018) The multifunctional role of phospho-calmodulin in pathophysiological processes. Biochem J 475:4011–4023. https://doi.org/10.1042/bcj20180755

    Article  CAS  PubMed  Google Scholar 

  57. Caito S, Lopes ACBA, Paoliello MMB, Aschner M (2017) Toxicology of lead and its damage to mammalian organs. Met Ions Life Sci 17. https://doi.org/10.1515/9783110434330-016

  58. Kasten-Jolly J, Lawrence DA (2018) The cationic (calcium and lead) and enzyme conundrum. J Toxicol Env Heal B 21(6–8):400–413. https://doi.org/10.1080/10937404.2019.1592728

  59. Suszkiw JB (2004) Presynaptic disruption of transmitter release by lead. Neurotoxicology 25(4):599–604. https://doi.org/10.1016/j.neuro.2003.09.009

    Article  CAS  PubMed  Google Scholar 

  60. Rodgers JS, Hocker JR, Hanas RJ, Nwosu EC, Hanas JS (2001) Mercuric ion inhibition of eukaryotic transcription factor binding to DNA. Biochem Pharmacol 61(12):1543–1550. https://doi.org/10.1016/s0006-2952(01)00629-3

    Article  CAS  PubMed  Google Scholar 

  61. Kuang W, Chen Z, Shi K, Sun H, Li H, Huang L, Bi J (2020) Adverse health effects of lead exposure on physical growth, erythrocyte parameters and school performances for school-aged children in eastern China. Environ Int 145:106130–106130. https://doi.org/10.1016/j.envint.2020.106130

    Article  CAS  PubMed  Google Scholar 

  62. Steenland K, Barry V (2020) Chronic renal disease among lead-exposed workers. Occup Environ Med 77(6):415–417. https://doi.org/10.1136/oemed-2019-106363

    Article  PubMed  Google Scholar 

  63. Lopez-Vanegas N-C, Hernandez G, Maldonado-Vega M, Calderon-Salinas J-V (2020) Leukocyte apoptosis, TNF-alpha concentration and oxidative damage in lead-exposed workers. Toxicol Appl Pharmacol 391. https://doi.org/10.1016/j.taap.2020.114901

  64. Fouad AA, Foda NT, Diab IH, Badr El Dine FMM, Balah MIF (2020) Evaluation of possible molecular toxicity induced by occupational exposure to lead and concomitant effect of smoking. Environ Sci Pollut Res 27(1):411–423. https://doi.org/10.1007/s11356-019-06879-0

    Article  CAS  Google Scholar 

  65. Brown L, Lynch M, Belova A, Klein R, Chiger A (2020) Developing a health impact model for adult lead exposure and cardiovascular disease mortality. Environ Health Perspect 128(9):97005–97005. https://doi.org/10.1289/ehp6552

    Article  CAS  PubMed  Google Scholar 

  66. Vasconcellos R, Alvarenga EC, Parreira RC, Lima SS, Resende RR (2016) Exploring the cell signalling in hepatocyte differentiation. Cell Signal 28(11):1773–1788. https://doi.org/10.1016/j.cellsig.2016.08.011

    Article  CAS  PubMed  Google Scholar 

  67. Lv Y, Bing Q, Lv Z, Xue J, Li S, Han B, Yang Q, Wang X, Zhang Z (2020) Imidacloprid-induced liver fibrosis in quails via activation of the TGF-beta 1/Smad pathway. Sci Total environ 705. https://doi.org/10.1016/j.scitotenv.2019.135915

  68. Gargouri M, Ben Saad H, Ben Amara I, Magne C, El Feki A (2016) Spirulina exhibits hepatoprotective effects against lead induced oxidative injury in newborn rats. Cell Mol biol 62 (10):85-93. https://doi.org/10.14715/cmb/2016.62.10.14

  69. Almasmoum H, Refaat B, Ghaith MM, Almaimani RA, Idris S, Ahmad J, Abdelghany AH, BaSalamah MA, El-Boshy M (2019) Protective effect of vitamin D3 against lead induced hepatotoxicity, oxidative stress, immunosuppressive and calcium homeostasis disorders in rat. Environ Toxicol Pharmacol 72. https://doi.org/10.1016/j.etap.2019.103246

  70. El-Boshy ME, Refaat B, Qasem AH, Khan A, Ghaith M, Almasmoum H, Mahbub A, Almaimani RA (2019) The remedial effect of Thymus vulgaris extract against lead toxicity-induced oxidative stress, hepatorenal damage, immunosuppression, and hematological disorders in rats. Environ Sci Pollut Res 26(22):22736–22746. https://doi.org/10.1007/s11356-019-05562-8

    Article  CAS  Google Scholar 

  71. Chen X, Zhu GY, Wang ZQ, Zhou H, He P, Liu YK, Jin TY (2019) The association between lead and cadmium co-exposure and renal dysfunction. Ecotoxicol Environ Saf 173:429–435. https://doi.org/10.1016/j.ecoenv.2019.01.121

    Article  CAS  PubMed  Google Scholar 

  72. Dong N, Li X, Xue C, Zhang L, Wang C, Xu X, Shan A (2020) Astragalus polysaccharides alleviates LPS-induced inflammation via the NF-kappa B/MAPK signaling pathway. J Cell Physiol 235(7–8):5525–5540. https://doi.org/10.1002/jcp.29452

    Article  CAS  PubMed  Google Scholar 

  73. Dong N, Xue C, Zhang L, Zhang T, Wang C, Bi C, Shan A (2020) Oleanolic acid enhances tight junctions and ameliorates inflammation in Salmonella typhimurium-induced diarrhea in mice via the TLR4/NF-kappa B and MAPK pathway. Food Funct 11(1):1122–1132. https://doi.org/10.1039/c9fo01718f

    Article  CAS  PubMed  Google Scholar 

  74. Zhang TS, Chen S, Chen L, Zhang LX, Meng FQ, Sha S, Ai CL, Tai JD (2019) Chlorogenic acid ameliorates lead-induced renal damage in mice. Biol Trace Elem Res 189(1):109–117. https://doi.org/10.1007/s12011-018-1508-6

    Article  CAS  PubMed  Google Scholar 

  75. Liu CM, Sun YZ, Sun JM, Ma JQ, Cheng C (2012) Protective role of quercetin against lead-induced inflammatory response in rat kidney through the ROS-mediated MAPKs and NF-kappa B pathway. BBA-Gen Subjects 1820(10):1693–1703. https://doi.org/10.1016/j.bbagen.2012.06.011

  76. Zhou CC, Gao ZY, Wang J, Wu MQ, Hu S, Chen F, Liu JX, Pan H, Yan CH (2018) Lead exposure induces Alzheimers’s disease (AD)-like pathology and disturbes cholesterol metabolism in the young rat brain. Toxicol Lett 296:173–183. https://doi.org/10.1016/j.toxlet.2018.06.1065

    Article  CAS  PubMed  Google Scholar 

  77. Eid A, Zawia N (2016) Consequences of lead exposure, and it’s emerging role as an epigenetic modifier in the aging brain. Neurotoxicology 56:254–261. https://doi.org/10.1016/j.neuro.2016.04.006

    Article  CAS  PubMed  Google Scholar 

  78. Xue L, Chen M, Yan LC, Bo JZ, Wang JB, Zhang YS (2019) Transcriptome study of brain nerve impairment induced by Pb exposure. Ieee Access 7:18206–18218. https://doi.org/10.1109/access.2019.2896169

    Article  Google Scholar 

  79. Yang W, Tian ZK, Yang HX, Feng ZJ, Sun JM, Jiang H, Cheng C, Ming QL, Liu CM (2019) Fisetin improves lead-induced neuroinflammation, apoptosis and synaptic dysfunction in mice associated with the AMPK/SIRT1 and autophagy pathway. Food Chem Toxicol 134. https://doi.org/10.1016/j.fct.2019.110824

  80. Ouyang L, Zhang W, Du GH, Liu HZ, Xie J, Gu JW, Zhang SY, Zhou FK, Shao LJ, Feng C, Fan GQ (2019) Lead exposure-induced cognitive impairment through RyR-modulating intracellular calcium signaling in aged rats. Toxicology 419:55–64. https://doi.org/10.1016/j.tox.2019.03.005

    Article  CAS  PubMed  Google Scholar 

  81. Liu KS, Hao JH, Zeng Y, Dai FC, Gu PQ (2013) Neurotoxicity and biomarkers of lead exposure: a review. Chin Med Sci J 03:54–64

    Google Scholar 

  82. Singh PK, Singh MK, Yadav RS, Nath R, Mehrotra A, Rawat A, Dixit RK (2019) Omega-3 fatty acid attenuates oxidative stress in cerebral cortex, cerebellum, and hippocampus tissue and improves neurobehavioral activity in chronic lead-induced neurotoxicity. Nutr Neurosci 22(2):83–97. https://doi.org/10.1080/1028415x.2017.1354542

    Article  CAS  PubMed  Google Scholar 

  83. Luo WJ, Ruan DY, Yan CH, Yin ST, Chen JY (2012) Effects of chronic lead exposure on functions of nervous system in Chinese children and developmental rats. Neurotoxicology 33(4):862–871. https://doi.org/10.1016/j.neuro.2012.03.008

    Article  CAS  PubMed  Google Scholar 

  84. Santhoshkumar R, Devi SA (2019) Protective effect of Abutilon indicum against lead-induced reproductive toxicity in male Wistar rats. J Cell Biochem 120(7):11196–11205. https://doi.org/10.1002/jcb.28395

    Article  CAS  Google Scholar 

  85. Hassan E, Kahilo K, Kamal T, Hassan M, Elgawish MS (2019) The protective effect of epigallocatechin-3-gallate on testicular oxidative stress in lead-induced toxicity mediated by Cyp19 gene / estradiol level. Toxicology 422:76–83. https://doi.org/10.1016/j.tox.2019.04.015

    Article  CAS  PubMed  Google Scholar 

  86. Nakade UP, Garg SK, Sharma A, Choudhury S, Yadav RS, Gupta K, Sood N (2015) Lead-induced adverse effects on the reproductive system of rats with particular reference to histopathological changes in uterus. Indian J Pharmacol 47(1):22–26. https://doi.org/10.4103/0253-7613.150317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Uchewa OO, Ezugworie OJ (2019) Countering the effects of lead as an environmental toxicant on the microanatomy of female reproductive system of adult Wistar rats using aqueous extract of Ficus vogelii. J Trace Elem Med Biol 52:192–198. https://doi.org/10.1016/j.jtemb.2018.12.016

    Article  CAS  PubMed  Google Scholar 

  88. Sheng Z, Wang S, Zhang X, Li X, Li B, Zhang Z (2020) Long-term exposure to low-dose lead induced deterioration in bone microstructure of male mice. Biol Trace Elem Res 195(2):491–498. https://doi.org/10.1007/s12011-019-01864-7

    Article  CAS  PubMed  Google Scholar 

  89. Gao D, Mondal TK, Lawrence DA (2007) Lead effects on development and function of bone marrow-derived dendritic cells promote Th2 immune responses. Toxicol Appl Pharmacol 222(1):69–79. https://doi.org/10.1016/j.taap.2007.04.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Metryka E, Chibowska K, Gutowska I, Falkowska A, Kupnicka P, Barczak K, Chlubek D, Baranowska-Bosiacka I (2018) Lead (Pb) exposure enhances expression of factors associated with inflammation. Int J Mol Sci 19(6). https://doi.org/10.3390/ijms19061813

  91. Singh N, Kumar A, Gupta VK, Sharma B (2018) Biochemical and molecular bases of lead-induced toxicity in mammalian systems and possible mitigations. Chem Res Toxicol 31(10):1009–1021. https://doi.org/10.1021/acs.chemrestox.8b00193

    Article  CAS  PubMed  Google Scholar 

  92. Jamesdaniel S, Rosati R, Westrick J, Ruden DM (2018) Chronic lead exposure induces cochlear oxidative stress and potentiates noise-induced hearing loss. Toxicol Lett 292:175–180. https://doi.org/10.1016/j.toxlet.2018.05.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Huang MT, Ma W, Lu YP, Chang RL, Fisher C, Manchand PS, Newmark HL, Conney AH (1995) Effects of curcumin, demethoxycurcumin, bisdemethoxycurcumin and tetrahydrocurcumin on 12-O-tetradecanoylphorbol-13-acetate-induced tumor promotion. Carcinogenesis 16(10):2493–2497. https://doi.org/10.1093/carcin/16.10.2493

    Article  CAS  PubMed  Google Scholar 

  94. Sandur SK, Pandey MK, Sung B, Ahn KS, Murakatni A, Sethi G, Limtrakul P, Badmaev V, Aggarwal BB (2007) Curcumin, demethtoxycurcumin, bisdemethoxycurcumin, tetrahydrocurcumin and turmerones differentially regulate anti-inflammatory and anti-proliferative responses through a ROS-independent mechanism. Carcinogenesis 28(8):1765–1773. https://doi.org/10.1093/carcin/bgm123

    Article  CAS  PubMed  Google Scholar 

  95. Terao J (2017) Factors modulating bioavailability of quercetin-related flavonoids and the consequences of their vascular function. Biochem Pharmacol 139:15–23. https://doi.org/10.1016/j.bcp.2017.03.021

    Article  CAS  PubMed  Google Scholar 

  96. Williamson G (2017) The role of polyphenols in modern nutrition. Nutr Bull 42(3):226–235. https://doi.org/10.1111/nbu.12278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Chae MR, Kang SJ, Lee KP, Choi BR, Kim HK, Park JK, Kim CY, Lee SW (2017) Onion (Allium cepa L.) peel extract (OPE) regulates human sperm motility via protein kinase C-mediated activation of the human voltage-gated proton channel. Andrology 5(5):979–989. https://doi.org/10.1111/andr.12406

    Article  CAS  PubMed  Google Scholar 

  98. Yahfoufi N, Alsadi N, Jambi M, Matar C (2018) The immunomodulatory and anti-inflammatory role of polyphenols. Nutrients 10(11). https://doi.org/10.3390/nu10111618

  99. Singh BN, Shankar S, Srivastava RK (2011) Green tea catechin, epigallocatechin-3-gallate (EGCG): mechanisms, perspectives and clinical applications. Biochem Pharmacol 82(12):1807–1821. https://doi.org/10.1016/j.bcp.2011.07.093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Kanlaya R, Thongboonkerd V (2019) Protective effects of epigallocatechin-3-gallate from green tea in various kidney diseases. Adv Nutr 10(1):112–121. https://doi.org/10.1093/advances/nmy077

    Article  PubMed  PubMed Central  Google Scholar 

  101. Rodriguez-Perez C, Garcia-Villanova B, Guerra-Hernandez E, Verardo V (2019) Grape seeds proanthocyanidins: an overview of in vivo bioactivity in animal models. Nutrients 11(10). https://doi.org/10.3390/nu11102435

  102. Rauf A, Imran M, Abu-Izneid T, Iahfisham Ul H, Patel S, Pan X, Naz S, Silva AS, Saeed F, Suleria HAR (2019) Proanthocyanidins: A comprehensive review. Biomed Pharmacother:116. https://doi.org/10.1016/j.biopha.2019.108999

  103. de Oliveira MR, Jardim FR, Setzer WN, Nabavi SM, Nabavi SF (2016) Curcumin, mitochondrial biogenesis, and mitophagy: exploring recent data and indicating future needs. Biotechnol Adv 34(5):813–826. https://doi.org/10.1016/j.biotechadv.2016.04.004

    Article  CAS  PubMed  Google Scholar 

  104. Gupta SC, Kismali G, Aggarwal BB (2013) Curcumin, a component of turmeric: from farm to pharmacy. Biofactors 39(1):2–13. https://doi.org/10.1002/biof.1079

    Article  CAS  PubMed  Google Scholar 

  105. Prasad S, Gupta SC, Tyagi AK, Aggarwal BB (2014) Curcumin, a component of golden spice: from bedside to bench and back. Biotechnol Adv 32(6):1053–1064. https://doi.org/10.1016/j.biotechadv.2014.04.004

    Article  CAS  PubMed  Google Scholar 

  106. Kocaadam B, Sanlier N (2017) Curcumin, an active component of turmeric (Curcuma longa), and its effects on health. Crit Rev Food Sci Nutr 57(13):2889–2895. https://doi.org/10.1080/10408398.2015.1077195

    Article  CAS  PubMed  Google Scholar 

  107. Ashrafizadeh M, Ahmadi Z, Mohamamdinejad R, Farkhondeh T, Samarghandian S (2020) Curcumin activates the Nrf2 pathway and induces cellular protection against oxidative injury. Curr Mol Med 20(2):116–133. https://doi.org/10.2174/1566524019666191016150757

    Article  CAS  PubMed  Google Scholar 

  108. Pu H-L, Chiang W-L, Maiti B, Liao Z-X, Ho Y-C, Shim MS, Chuang E-Y, Xia Y, Sung H-W (2014) Nanoparticles with dual responses to oxidative stress and reduced pH for drug release and anti-inflammatory applications. ACS Nano 8(2):1213–1221. https://doi.org/10.1021/nn4058787

    Article  CAS  PubMed  Google Scholar 

  109. Mailafiya MM, Abubakar K, Chiroma SM, Danmaigoro A, Rahim EBA, Moklas MAM, Zakaria ZAB (2020) Curcumin-loaded cockle shell-derived calcium carbonate nanoparticles: a novel strategy for the treatment of lead-induced hepato-renal toxicity in rats. Saudi J Biol Sci 27(6):1538–1552. https://doi.org/10.1016/j.sjbs.2020.03.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Gupta SC, Prasad S, Kim JH, Patchva S, Webb LJ, Priyadarsini IK, Aggarwal BB (2011) Multitargeting by curcumin as revealed by molecular interaction studies. Nat Prod Rep 28(12):1937–1955. https://doi.org/10.1039/c1np00051a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Shukla PK, Khanna VK, Khan MY, Srimal RC (2003) Protective effect of curcumin against lead neurotoxicity in rat. Hum Exp Toxicol 22(12):653–658. https://doi.org/10.1191/0960327103ht411oa

    Article  CAS  PubMed  Google Scholar 

  112. Tuzmen MN, Yucel NC, Kalburcu T, Demiryas N (2015) Effects of curcumin and tannic acid on the aluminum- and lead-induced oxidative neurotoxicity and alterations in NMDA receptors. Toxicol Mech Methods 25(2):120–127. https://doi.org/10.3109/15376516.2014.997947

    Article  CAS  PubMed  Google Scholar 

  113. Benammi H, Erazi H, El Hiba O, Vinay L, Bras H, Viemari J-C, Gamrani H (2017) Disturbed sensorimotor and electrophysiological patterns in lead intoxicated rats during development are restored by curcumin I. PLoS One 12(3):e0172715. https://doi.org/10.1371/journal.pone.0172715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Daniel S, Limson JL, Dairam A, Watkins GM, Daya S (2004) Through metal binding, curcumin protects against lead- and cadmium-induced lipid peroxidation in rat brain homogenates and against lead-induced tissue damage in rat brain. J Inorg Biochem 98(2):266–275. https://doi.org/10.1016/j.jinorgbio.2003.10.014

    Article  CAS  PubMed  Google Scholar 

  115. Abubakar K, Mailafiya MM, Danmaigoro B, Chiroma SM, Rahim EBA, Zakari MZAB (2019) Curcumin attenuates lead-induced cerebellar toxicity in rats via chelating activity and inhibition of oxidative stress. Biomolecules 9(9). https://doi.org/10.3390/biom9090453

  116. Hosseinzadeh S, Roshan VD, Mahjoub S (2013) Continuous exercise training and curcumin attenuate changes in brain-derived neurotrophic factor and oxidative stress induced by lead acetate in the hippocampus of male rats. Pharm Biol 51(2):240–245. https://doi.org/10.3109/13880209.2012.717230

    Article  CAS  PubMed  Google Scholar 

  117. Abubakar K, Mailafiya MM, Chiroma SM, Danmaigoro A, Zyoud TYT, Rahim EA, Zakaria MZAB (2020) Ameliorative effect of curcumin on lead-induced hematological and hepatorenal toxicity in a rat model. J Biochem Mol Toxicol. https://doi.org/10.1002/jbt.22483

  118. Liu X, Yao Z (2016) Chronic over-nutrition and dysregulation of GSK3 in diseases. Nutr Metab (Lond) 13:49. https://doi.org/10.1186/s12986-016-0108-8

    Article  CAS  Google Scholar 

  119. Alhusaini A, Fadda L, Hasan IH, Zakaria E, Alenazi AM, Mahmoud AM (2019) Curcumin ameliorates lead-induced hepatotoxicity by suppressing oxidative stress and inflammation, and modulating Akt/GSK-3 beta signaling pathway. Biomolecules 9(11). https://doi.org/10.3390/biom9110703

  120. Nariya A, Pathan A, Shah N, Chettiar S, Patel A, Dattani J, Chandel D, Rao M, Jhala D (2018) Ameliorative effects of curcumin against lead induced toxicity in human peripheral blood lymphocytes culture. Drug Chem Toxicol 41(1):1–8. https://doi.org/10.3109/01480545.2015.1133637

    Article  CAS  PubMed  Google Scholar 

  121. Lu Y, Wu S, Xiang B, Li L, Lin Y (2020) Curcumin attenuates oxaliplatin-induced liver injury and oxidative stress by activating the Nrf2 pathway. Drug Des Dev Ther 14:73–85. https://doi.org/10.2147/dddt.s224318

  122. Ren LW, Zhan P, Wang Q, Wang CX, Liu YN, Yu ZW, Zhang SS (2019) Curcumin upregulates the Nrf2 system by repressing inflammatory signaling-mediated Keap1 expression in insulin-resistant conditions. Biochem Biophys Res Commun 514(3):691–698. https://doi.org/10.1016/j.bbrc.2019.05.010

    Article  CAS  PubMed  Google Scholar 

  123. Wafi AM, Hong J, Rudebush TL, Yu L, Hackfort B, Wang HJ, Schultz HD, Zucker IH, Gao L (2019) Curcumin improves exercise performance of mice with coronary artery ligation-induced HFrEF: Nrf2 and antioxidant mechanisms in skeletal muscle. J Appl Physiol 126(2):477–486. https://doi.org/10.1152/japplphysiol.00654.2018

    Article  CAS  PubMed  Google Scholar 

  124. Karuppagounder V, Arumugam S, Thandavarayan RA, Sreedhar R, Giridharan VV, Watanabe K (2016) Molecular targets of quercetin with anti-inflammatory properties in atopic dermatitis. Drug Discov Today 21(4):632–639. https://doi.org/10.1016/j.drudis.2016.02.011

    Article  CAS  PubMed  Google Scholar 

  125. Cornard JP, Dangleterre L, Lapouge C (2005) Computational and spectroscopic characterization of the molecular and electronic structure of the Pb(II)-quercetin complex. J Phys Chem A 109(44):10044–10051. https://doi.org/10.1021/jp053506i

    Article  CAS  PubMed  Google Scholar 

  126. Ravichandran R, Rajendran M, Devapiriam D (2014) Antioxidant study of quercetin and their metal complex and determination of stability constant by spectrophotometry method. Food Chem 146:472–478. https://doi.org/10.1016/j.foodchem.2013.09.080

    Article  CAS  PubMed  Google Scholar 

  127. Liu C-M, Ma J-Q, Sun Y-Z (2010) Quercetin protects the rat kidney against oxidative stress-mediated DNA damage and apoptosis induced by lead. Environ Toxicol Pharmacol 30(3):264–271. https://doi.org/10.1016/j.etap.2010.07.002

    Article  CAS  PubMed  Google Scholar 

  128. Liu C-M, Zheng G-H, Cheng C, Sun J-M (2013) Quercetin protects mouse brain against lead-induced neurotoxicity. J Agric Food Chem 61(31):7630–7635. https://doi.org/10.1021/jf303387d

    Article  CAS  PubMed  Google Scholar 

  129. Chander K, Vaibhav K, Ahmed ME, Javed H, Tabassum R, Khan A, Kumar M, Katyal A, Islam F, Siddiqui MS (2014) Quercetin mitigates lead acetate-induced behavioral and histological alterations via suppression of oxidative stress, Hsp-70, Bak and upregulation of Bcl-2. Food Chem Toxicol 68:297–306. https://doi.org/10.1016/j.fct.2014.02.012

    Article  CAS  PubMed  Google Scholar 

  130. Liu CM, Zheng GH, Ming QL, Sun JM, Cheng C (2013) Protective effect of quercetin on lead-induced oxidative stress and endoplasmic reticulum stress in rat liver via the IRE1/JNK and PI3K/Akt pathway. Free Radic Res 47(3):192–201. https://doi.org/10.3109/10715762.2012.760198

    Article  CAS  PubMed  Google Scholar 

  131. Liu C-M, Zheng Y-L, Lu J, Zhang Z-F, Fan S-H, Wu D-M, Ma J-Q (2010) Quercetin protects rat liver against lead-induced oxidative stress and apoptosis. Environ Toxicol Pharmacol 29(2):158–166. https://doi.org/10.1016/j.etap.2009.12.006

    Article  CAS  PubMed  Google Scholar 

  132. Al-Omair MA, Sedky A, Ali A, Elsawy H (2017) Ameliorative potentials of quercetin against lead-induced hematological and testicular alterations in albino rats. Chin J Physiol 60(1):54–61. https://doi.org/10.4077/cjp.2017.baf440

    Article  CAS  PubMed  Google Scholar 

  133. Farhoosh R, Golmovahhed GA, Khodaparast MHH (2007) Antioxidant activity of various extracts of old tea leaves and black tea wastes (Camellia sinensis L.). Food Chem 100(1):231–236. https://doi.org/10.1016/j.foodchem.2005.09.046

    Article  CAS  Google Scholar 

  134. Sanlier N, Gokcen BB, Altug M (2018) Tea consumption and disease correlations. Trends Food Sci Technol 78:95–106. https://doi.org/10.1016/j.tifs.2018.05.026

    Article  CAS  Google Scholar 

  135. Narotzki B, Reznick AZ, Aizenbud D, Levy Y (2012) Green tea: a promising natural product in oral health. Arch Oral Biol 57(5):429–435. https://doi.org/10.1016/j.archoralbio.2011.11.017

    Article  CAS  PubMed  Google Scholar 

  136. Yin S-T, Tang M-L, Su L, Chen L, Hu P, Wang H-L, Wang M, Ruan D-Y (2008) Effects of epigallocatechin-3-gallate on lead-induced oxidative damage. Toxicology 249(1):45–54. https://doi.org/10.1016/j.tox.2008.04.006

    Article  CAS  PubMed  Google Scholar 

  137. Ayyalasomayajula N, Ajumeera R, Chellu CS, Challa S (2019) Mitigative effects of epigallocatechin gallate in terms of diminishing apoptosis and oxidative stress generated by the combination of lead and amyloid peptides in human neuronal cells. J Biochem Mol Toxicol 33(11):e22393. https://doi.org/10.1002/jbt.22393

    Article  CAS  PubMed  Google Scholar 

  138. Liu C-M, Ma J-Q, Sun J-M, Feng Z-J, Cheng C, Yang W, Jiang H (2017) Association of changes in ER stress-mediated signaling pathway with lead-induced insulin resistance and apoptosis in rats and their prevention by A-type dimeric epigallocatechin-3-gallate. Food Chem Toxicol 110:325–332. https://doi.org/10.1016/j.fct.2017.10.040

    Article  CAS  PubMed  Google Scholar 

  139. Wang H, Li D, Hu Z, Zhao S, Zheng Z, Li W (2016) Protective effects of green tea polyphenol against renal injury through ROS-mediated JNK-MAPK pathway in lead exposed rats. Mol cells 39 (6):508-513. https://doi.org/10.14348/molcells.2016.2170

  140. Chen LJ, Yang XQ, Jiao HL, Zhao BL (2003) Tea catechins protect against lead-induced ROS formation, mitochondrial dysfunction, and calcium dysregulation in PC12 cells. Chem Res Toxicol 16(9):1155–1161. https://doi.org/10.1021/tx0340605

    Article  CAS  PubMed  Google Scholar 

  141. Hamed EA, Meki A-RMA, Abd El-Mottaleb NA (2010) Protective effect of green tea on lead-induced oxidative damage in rat’s blood and brain tissue homogenates. J Physiol Biochem 66(2):143–151. https://doi.org/10.1007/s13105-010-0019-5

    Article  CAS  PubMed  Google Scholar 

  142. Mehana EE, Meki ARMA, Fazili KM (2012) Ameliorated effects of green tea extract on lead induced liver toxicity in rats. Exp Toxicol Pathol 64(4):291–295. https://doi.org/10.1016/j.etp.2010.09.001

    Article  CAS  PubMed  Google Scholar 

  143. Khalaf AA, Moselhy WA, Abdel-Hamed MI (2012) The protective effect of green tea extract on lead induced oxidative and DNA damage on rat brain. Neurotoxicology 33(3):280–289. https://doi.org/10.1016/j.neuro.2012.02.003

    Article  CAS  PubMed  Google Scholar 

  144. Bagchi D, Swaroop A, Preuss HG, Bagchi M (2014) Free radical scavenging, antioxidant and cancer chemoprevention by grape seed proanthocyanidin: an overview. Mutat Res-Fundam Mol Mech Mutagen 768:69–73. https://doi.org/10.1016/j.mrfmmm.2014.04.004

    Article  CAS  Google Scholar 

  145. Liu C-M, Ma J-Q, Liu S-S, Zheng G-H, Feng Z-J, Sun J-M (2014) Proanthocyanidins improves lead-induced cognitive impairments by blocking endoplasmic reticulum stress and nuclear factor-kappa B-mediated inflammatory pathways in rats. Food Chem Toxicol 72:295–302. https://doi.org/10.1016/j.fct.2014.07.033

    Article  CAS  PubMed  Google Scholar 

  146. Long M, Liu Y, Cao Y, Wang N, Dang M, He J (2016) Proanthocyanidins attenuation of chronic Lead-induced liver oxidative damage in Kunming mice via the Nrf2/ARE pathway. Nutrients 8(10)

  147. Liu B, Jiang H, Lu J, Baiyun R, Li S, Lv Y, Li D, Wu H, Zhang Z (2018) Grape seed procyanidin extract ameliorates lead-induced liver injury via miRNA153 and AKT/GSK-3 beta/Fyn-mediated Nrf2 activation. J Nutr Biochem 52:115–123. https://doi.org/10.1016/j.jnutbio.2017.09.025

    Article  CAS  PubMed  Google Scholar 

  148. Liu B, Zhang H, Tan X, Yang D, Lv Z, Jiang H, Lu J, Baiyun R, Zhang Z (2017) GSPE reduces lead-induced oxidative stress by activating the Nrf2 pathway and suppressing miR153 and GSK-3 beta in rat kidney. Oncotarget 8 (26):42226-42237. https://doi.org/10.18632/oncotarget.15033

  149. Yang D, Jiang H, Lu J, Lv Y, Baiyun R, Li S, Liu B, Lv Z, Zhang Z (2018) Dietary grape seed proanthocyanidin extract regulates metabolic disturbance in rat liver exposed to lead associated with PPAR alpha signaling pathway. Environ Pollut 237:377–387. https://doi.org/10.1016/j.envpol.2018.02.035

    Article  CAS  PubMed  Google Scholar 

  150. Yang D, Li S, Gao L, Lv Z, Bing Q, Lv Q, Zheng X, Li R, Zhang Z (2018) Dietary grape seed procyanidin extract protects against lead-induced rats involving endoplasmic reticulum stress inhibition and AKT heart injury in activation. J Nutr Biochem 62:43–49. https://doi.org/10.1016/j.jnutbio.2018.07.013

    Article  CAS  PubMed  Google Scholar 

  151. Zhang L, Tu R, Wang Y, Hu Y, Li X, Cheng X, Yin Y, Li W, Huang H (2017) Early-life exposure to lead induces cognitive impairment in elder mice targeting SIRT1 phosphorylation and oxidative alterations. Front Physiol 8. https://doi.org/10.3389/fphys.2017.00446

  152. Ansar S, Hamed S, AlGhosoon HT, AlSaedan RA, Iqbal M (2016) The protective effect of rutin against renal toxicity induced by lead acetate. Toxin Rev 35(1–2):58–62. https://doi.org/10.3109/15569543.2016.1155623

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 31972580 and 31501914), the Heilongjiang Province Natural Science Foundation (LH2019C023 and TD2019C001), and the China Agriculture Research System (CARS-35).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Na Dong.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Lv, H., Xue, C. et al. Plant Polyphenols: Potential Antidotes for Lead Exposure. Biol Trace Elem Res 199, 3960–3976 (2021). https://doi.org/10.1007/s12011-020-02498-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-020-02498-w

Keywords

Navigation