Skip to main content
Log in

Recent Insights on the Conformational Changes, Functionality, and Physiological Properties of Plant-Based Protein–Polyphenol Conjugates

  • REVIEW
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Plant proteins are promising sources of nutrition with enhanced health benefits due to their interaction with bioactive compounds like polyphenols. These interactions can form protein–polyphenol complexes with diverse properties and applications in the food, nutraceutical, and pharmaceutical industries. To exploit the potential of these conjugates, it is essential to understand how they are formed, characterized, and delivered. Various techniques such as spectroscopy, thermodynamics, and molecular docking simulations can reveal the mechanism and outcomes of protein–polyphenol binding. Moreover, the surface modification of protein–polyphenol conjugation can enhance the pharmacological effects of different drug molecules and enable their targeted delivery to specific tissues and organs. This review focuses on the systematic design and application of plant-based protein–polyphenol conjugates in diverse food systems and therapeutic interventions, with a focus on their antioxidation, anticancer, anti-allergy, anti-inflammatory, and antidiabetic effects. Additionally, the review aims to provide a comprehensive understanding of the binding mechanisms, conformational changes, and functional properties of these conjugates. The review brings forth the importance of exploring the intricate interplay between plant proteins and polyphenols, unlocking their potential in fostering sustainable and healthier food systems as well as versatile and effective drug delivery systems for human health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Reproduced from Jiang et al. (2019) with permission from Elsevier

Fig. 4

Reproduced from (Jiang et al., 2019) with Elsevier’s permission

Fig. 5

Reproduced from Pi et al. (2023) with permission from Elsevier

Similar content being viewed by others

Data Availability

Data will be made available on reasonable request.

References

  • Alkan, D., Aydemir, L. Y., Arcan, I., Yavuzdurmaz, H., Atabay, H. I., Ceylan, C., & Yemenicioǧlu, A. (2011). Development of flexible antimicrobial packaging materials against Campylobacter jejuni by incorporation of gallic acid into zein-based films. Journal of Agricultural and Food Chemistry, 59(20), 11003–11010. https://doi.org/10.1021/JF202584B/ASSET/IMAGES/LARGE/JF-2011-02584B_0005.JPEG

    Article  CAS  PubMed  Google Scholar 

  • Alu’datt, M. H., Rababah, T., Alhamad, M. N., Gammoh, S., Ereifej, K., Alodat, M., et al. (2016). Antioxidant and antihypertensive properties of phenolic-protein complexes in extracted protein fractions from Nigella damascena and Nigella arvensis. Food Hydrocolloids, 56, 84–92. https://doi.org/10.1016/j.foodhyd.2015.12.008

    Article  CAS  Google Scholar 

  • Anirudhan, T. S., Bini, B. S., & Manjusha, V. (2021). Glycyrrhetinic acid conjugated zein capped aminated mesoporous silica nanoparticle-based dual drug delivery system for liver: A pH-dependent triggered release. Journal of Molecular Liquids, 340, 116852. https://doi.org/10.1016/J.MOLLIQ.2021.116852

  • Araujo, J. T. C. de, Martin-Pastor, M., Pérez, L., Pinazo, A., & Sousa, F. F. O. de. (2021). Development of anacardic acid-loaded zein nanoparticles: Physical chemical characterization, stability and antimicrobial improvement. Journal of Molecular Liquids, 332, 115808. https://doi.org/10.1016/J.MOLLIQ.2021.115808

  • Benjakul, S., Singh, A., Chotphruethipong, L., & Mittal, A. (2021). Protein-polyphenol conjugates: Preparation, functional properties, bioactivities and applications in foods and nutraceuticals. Advances in Food and Nutrition Research, 98, 281–320. https://doi.org/10.1016/BS.AFNR.2021.02.011

    Article  CAS  PubMed  Google Scholar 

  • Chanphai, P., & Tajmir-Riahi, H. A. (2020). Conjugation of citric acid and gallic acid with serum albumins: Acid binding sites and protein conformation. Journal of Molecular Liquids, 299, 112178. https://doi.org/10.1016/J.MOLLIQ.2019.112178

  • Chao Song, Z., Zhang, H., Fei Niu, P., Shi, L. S., Yan Yang, X., Hong Meng, Y., et al. (2023). Fabrication of a novel antioxidant emulsifier through tuning the molecular interaction between soy protein isolates and young apple polyphenols. Food Chemistry, 420, 136110. https://doi.org/10.1016/J.FOODCHEM.2023.136110

  • Cheetangdee, N., & Benjakul, S. (2017). Effects of rice hull phenolic extract on the stability of emulsions stabilized by rice bran protein hydrolysate. International Food Research Journal, 24(4), 1588–1594. http://www.ifrj.upm.edu.my/24 (04) 2017/(33).pdf. Accessed 13 September 2022

  • Chen, F. P., Liu, L. L., & Tang, C. H. (2020). Spray-drying microencapsulation of curcumin nanocomplexes with soy protein isolate: Encapsulation, water dispersion, bioaccessibility and bioactivities of curcumin. Food Hydrocolloids, 105, 105821. https://doi.org/10.1016/J.FOODHYD.2020.105821

  • Chen, G., Wang, S., Feng, B., Jiang, B., & Miao, M. (2019). Interaction between soybean protein and tea polyphenols under high pressure. Food Chemistry, 277, 632–638. https://doi.org/10.1016/J.FOODCHEM.2018.11.024

    Article  CAS  PubMed  Google Scholar 

  • Czubinski, J., & Dwiecki, K. (2017). A review of methods used for investigation of protein–phenolic compound interactions. International Journal of Food Science and Technology, 52(3), 573–585. https://doi.org/10.1111/IJFS.13339

    Article  CAS  Google Scholar 

  • Dahiya, S., Rani, R., Dhingra, D., Kumar, S., & Dilbaghi, N. (2018). Conjugation of epigallocatechin gallate and piperine into a zein nanocarrier: implication on antioxidant and anticancer potential. Advances in Natural Sciences: Nanoscience and Nanotechnology, 9(3), 035011. https://doi.org/10.1088/2043-6254/AAD5C1

  • Dai, S., Lian, Z., Qi, W., Chen, Y., Tong, X., Tian, T., et al. (2022). Non-covalent interaction of soy protein isolate and catechin: Mechanism and effects on protein conformation. Food Chemistry, 384, 132507. https://doi.org/10.1016/J.FOODCHEM.2022.132507

  • Dai, T., Chen, J., McClements, D. J., Hu, P., Ye, X., Liu, C., & Li, T. (2019a). Protein–polyphenol interactions enhance the antioxidant capacity of phenolics: Analysis of rice glutelin–procyanidin dimer interactions. Food & Function, 10(2), 765–774. https://doi.org/10.1039/C8FO02246A

    Article  CAS  Google Scholar 

  • Dai, T., Li, R., Liu, C., Liu, W., Li, T., Chen, J., et al. (2019b). Effect of rice glutelin-resveratrol interactions on the formation and stability of emulsions: A multiphotonic spectroscopy and molecular docking study. Food Hydrocolloids, 97(July). https://doi.org/10.1016/j.foodhyd.2019.105234

  • Dai, T., Li, T., Li, R., Zhou, H., Liu, C., Chen, J., & McClements, D. J. (2020). Utilization of plant-based protein-polyphenol complexes to form and stabilize emulsions: Pea proteins and grape seed proanthocyanidins. Food Chemistry, 329, 127219. https://doi.org/10.1016/J.FOODCHEM.2020.127219

  • Dai, T., Yan, X., Li, Q., Li, T., Liu, C., McClements, D. J., & Chen, J. (2017). Characterization of binding interaction between rice glutelin and gallic acid: Multi-spectroscopic analyses and computational docking simulation. Food Research International, 102, 274–281. https://doi.org/10.1016/J.FOODRES.2017.09.020

    Article  CAS  PubMed  Google Scholar 

  • Dias, R., Perez-Gregorio, M. R., Mateus, N., & De Freitas, V. (2016). Interaction study between wheat-derived peptides and procyanidin B3 by mass spectrometry. Food Chemistry, 194, 1304–1312. https://doi.org/10.1016/J.FOODCHEM.2015.08.108

    Article  CAS  PubMed  Google Scholar 

  • Djuardi, A. U. P., Yuliana, N. D., Ogawa, M., Akazawa, T., & Suhartono, M. T. (2020). Emulsifying properties and antioxidant activity of soy protein isolate conjugated with tea polyphenol extracts. Journal of Food Science and Technology, 57(10), 3591–3600. https://doi.org/10.1007/S13197-020-04391-9/FIGURES/5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan, Y., Zhang, Y., Yokoyama, W., & Yi, J. (2017). β-Lactoglobulin–chlorogenic acid conjugate-based nanoparticles for delivery of (−)-epigallocatechin-3-gallate. RSC Advances, 7(35), 21366–21374. https://doi.org/10.1039/C6RA28462K

    Article  CAS  Google Scholar 

  • Grace, M. H., Guzman, I., Roopchand, D. E., Moskal, K., Cheng, D. M., Pogrebnyak, N., et al. (2013). Stable binding of alternative protein-enriched food matrices with concentrated cranberry bioflavonoids for functional food applications. Journal of Agricultural and Food Chemistry, 61(28), 6856–6864. https://doi.org/10.1021/JF401627M/SUPPL_FILE/JF401627M_SI_001.PDF

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Günal-Köroğlu, D., Lorenzo, J. M., & Capanoglu, E. (2023). Plant-Based Protein-Phenolic Interactions: Effect on different matrices and in vitro gastrointestinal digestion. Food Research International, 173, 113269. https://doi.org/10.1016/J.FOODRES.2023.113269

  • Guo, K., Zhou, G., Lok, U. S., Wang, X., & Jiang, L. (2022). Improving interface-related functions and antioxidant activities of soy protein isolate by covalent conjugation with chlorogenic acid. Journal of Food Measurement and Characterization, 16(1), 202–213. https://doi.org/10.1007/S11694-021-01148-6

    Article  Google Scholar 

  • Guo, Y., Bao, Y. hong, Sun, K. feng, Chang, C., & Liu, W. feng. (2021). Effects of covalent interactions and gel characteristics on soy protein-tannic acid conjugates prepared under alkaline conditions. Food Hydrocolloids, 112, 106293. https://doi.org/10.1016/J.FOODHYD.2020.106293

  • He, W., Zhang, T., Velickovic, T. C., Li, S., Lyu, Y., Wang, L., et al. (2020). Covalent conjugation with (−)-epigallo-catechin 3-gallate and chlorogenic acid changes allergenicity and functional properties of Ara h1 from peanut. Food Chemistry, 331, 127355. https://doi.org/10.1016/J.FOODCHEM.2020.127355

  • Hoskin, R. T., Xiong, J., Esposito, D. A., & Lila, M. A. (2019). Blueberry polyphenol-protein food ingredients: The impact of spray drying on the in vitro antioxidant activity, anti-inflammatory markers, glucose metabolism and fibroblast migration. Food Chemistry, 280, 187–194. https://doi.org/10.1016/J.FOODCHEM.2018.12.046

    Article  CAS  PubMed  Google Scholar 

  • Insaward, A., Duangmal, K., & Mahawanich, T. (2015). Mechanical, optical, and barrier properties of soy protein film as affected by phenolic acid addition. Journal of Agricultural and Food Chemistry, 63(43), 9421–9426. https://doi.org/10.1021/JF504016M/ASSET/IMAGES/LARGE/JF-2014-04016M_0006.JPEG

    Article  CAS  PubMed  Google Scholar 

  • Jiang, L., Liu, Y., Li, L., Qi, B., Ju, M., Xu, Y., et al. (2019). Covalent conjugates of anthocyanins to soy protein: Unravelling their structure features and in vitro gastrointestinal digestion fate. Food Research International, 120, 603–609. https://doi.org/10.1016/J.FOODRES.2018.11.011

    Article  CAS  PubMed  Google Scholar 

  • Kamguyan, K., Kjeldsen, R. B., Moghaddam, S. Z., Nielsen, M. R., Thormann, E., Zór, K., et al. (2022). Bioadhesive tannic-acid-functionalized zein coating achieves engineered colonic delivery of ibd therapeutics via reservoir microdevices. Pharmaceutics, 14(11). https://doi.org/10.3390/PHARMACEUTICS14112536

  • Karami, Z., Peighambardoust, S. H., Hesari, J., Akbari-Adergani, B., & Andreu, D. (2019). Antioxidant, anticancer and ACE-inhibitory activities of bioactive peptides from wheat germ protein hydrolysates. Food Bioscience, 32, 100450. https://doi.org/10.1016/J.FBIO.2019.100450

  • Karefyllakis, D., Altunkaya, S., Berton-Carabin, C. C., van der Goot, A. J., & Nikiforidis, C. V. (2017). Physical bonding between sunflower proteins and phenols: Impact on interfacial properties. Food Hydrocolloids, 73, 326–334. https://doi.org/10.1016/J.FOODHYD.2017.07.018

    Article  CAS  Google Scholar 

  • Karefyllakis, D., Salakou, S., Bitter, J. H., van der Goot, A. J., & Nikiforidis, C. V. (2018). Covalent bonding of chlorogenic acid induces structural modifications on sunflower proteins. ChemPhysChem, 19(4), 459–468. https://doi.org/10.1002/CPHC.201701054

    Article  CAS  PubMed  Google Scholar 

  • Li, J., & Chen, Z. (2022). Fabrication of heat-treated soybean protein isolate-EGCG complex nanoparticle as a functional carrier for curcumin. LWT, 159, 113059. https://doi.org/10.1016/J.LWT.2021.113059

  • Li, T., Wang, L., Chen, Z., Zhang, X., & Zhu, Z. (2020). Functional properties and structural changes of rice proteins with anthocyanins complexation. Food Chemistry, 331, 127336. https://doi.org/10.1016/J.FOODCHEM.2020.127336

  • Li, Y., & Mattison, C. P. (2018). Polyphenol-rich pomegranate juice reduces IgE binding to cashew nut allergens. Journal of the Science of Food and Agriculture, 98(4), 1632–1638. https://doi.org/10.1002/JSFA.8639

    Article  CAS  PubMed  Google Scholar 

  • Li, Y., Liu, H., Liu, Q., Kong, B., & Diao, X. (2019). Effects of zein hydrolysates coupled with sage (salvia officinalis) extract on the emulsifying and oxidative stability of myofibrillar protein prepared oil-in-water emulsions. Food Hydrocolloids, 87, 149–157. https://doi.org/10.1016/J.FOODHYD.2018.07.052

    Article  Google Scholar 

  • Li, Y., He, D., Li, B., Lund, M. N., Xing, Y., Wang, Y., et al. (2021). Engineering polyphenols with biological functions via polyphenol-protein interactions as additives for functional foods. Trends in Food Science & Technology, 110, 470–482. https://doi.org/10.1016/J.TIFS.2021.02.009

    Article  CAS  Google Scholar 

  • Liang, H., Zhou, B., Li, J., Xu, W., Liu, S., Li, Y., et al. (2015). Supramolecular design of coordination bonding architecture on zein nanoparticles for pH-responsive anticancer drug delivery. Colloids and Surfaces B: Biointerfaces, 136, 1224–1233. https://doi.org/10.1016/J.COLSURFB.2015.09.037

    Article  CAS  PubMed  Google Scholar 

  • Liu, C., Jin, H., Yu, Y., Sun, J., Zheng, H., Zhang, Y., et al. (2020). The improvement of nanoemulsion stability and antioxidation via protein-chlorogenic acid-dextran conjugates as emulsifiers. Nanomaterials, 10(6), 1094. https://doi.org/10.3390/NANO10061094

  • Liu, F., Ma, C., McClements, D. J., & Gao, Y. (2017). A comparative study of covalent and non-covalent interactions between zein and polyphenols in ethanol-water solution. Food Hydrocolloids, 63, 625–634. https://doi.org/10.1016/J.FOODHYD.2016.09.041

    Article  CAS  Google Scholar 

  • Liu, F., Ma, D., Luo, X., Zhang, Z., He, L., Gao, Y., & McClements, D. J. (2018). Fabrication and characterization of protein-phenolic conjugate nanoparticles for co-delivery of curcumin and resveratrol. Food Hydrocolloids, 79, 450–461. https://doi.org/10.1016/J.FOODHYD.2018.01.017

    Article  CAS  Google Scholar 

  • Liu, J., Yong, H., Yao, X., Hu, H., Yun, D., & Xiao, L. (2019). Recent advances in phenolic–protein conjugates: Synthesis, characterization, biological activities and potential applications. RSC Advances, 9(61), 35825–35840. https://doi.org/10.1039/C9RA07808H

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manzoor, M., Gani, A., Jaglan, S., & Jaiswal, A. K. (2022a). Modulation of native structural architecture and hydrodynamic properties of apple seed protein isolates. Innovative Food Science & Emerging Technologies, 80, 103083. https://doi.org/10.1016/J.IFSET.2022.103083

  • Manzoor, M., Sharma, P., Murtaza, M., Jaiswal, A. K., & Jaglan, S. (2023). Fabrication, characterization, and interventions of protein, polysaccharide and lipid-based nanoemulsions in food and nutraceutical delivery applications: A review. International Journal of Biological Macromolecules, 241, 124485. https://doi.org/10.1016/J.IJBIOMAC.2023.124485

  • Manzoor, M., Singh, J., Bandral, J. D., Gani, A., & Shams, R. (2020). Food hydrocolloids: Functional, nutraceutical and novel applications for delivery of bioactive compounds. International Journal of Biological Macromolecules. Elsevier B.V. https://doi.org/10.1016/j.ijbiomac.2020.09.182

  • Manzoor, M., Singh, J., & Gani, A. (2022b). Exploration of bioactive peptides from various origin as promising nutraceutical treasures: In vitro, in silico and in vivo studies. Food Chemistry, 373, 131395. https://doi.org/10.1016/J.FOODCHEM.2021.131395

  • Manzoor, M., Singh, J., Ray, A., & Gani, A. (2021). Recent advances in analysis of food proteins. Food biopolymers: Structural, functional and nutraceutical properties, 269–298. https://doi.org/10.1007/978-3-030-27061-2_12

  • Miao, R., Jin, F., Wang, Z., Lu, W., Liu, J., Li, X., & Zhang, R. X. (2022). Oral delivery of decanoic acid conjugated plant protein shell incorporating hybrid nanosystem leverage intestinal absorption of polyphenols. Biomaterials, 281. https://doi.org/10.1016/J.BIOMATERIALS.2022.121373

  • Nimse, S. B., & Pal, D. (2015). Free radicals, natural antioxidants, and their reaction mechanisms. RSC Advances, 5(35), 27986–28006. https://doi.org/10.1039/C4RA13315C

    Article  CAS  Google Scholar 

  • Nunes, R., Baião, A., Monteiro, D., & das Neves, J., & Sarmento, B. (2020). Zein nanoparticles as low-cost, safe, and effective carriers to improve the oral bioavailability of resveratrol. Drug Delivery and Translational Research, 10(3), 826–837. https://doi.org/10.1007/S13346-020-00738-Z/METRICS

    Article  CAS  PubMed  Google Scholar 

  • Pan, X., Fang, Y., Wang, L., Shi, Y., Xie, M., Xia, J., et al. (2019). Covalent interaction between rice protein hydrolysates and chlorogenic acid: Improving the stability of oil-in-water emulsions. Journal of Agricultural and Food Chemistry, 67(14), 4023–4030. https://doi.org/10.1021/ACS.JAFC.8B06898/ASSET/IMAGES/LARGE/JF-2018-06898K_0006.JPEG

    Article  CAS  PubMed  Google Scholar 

  • Pang, X. H., Yang, Y., Bian, X., Wang, B., Ren, L. K., Liu, L. L., et al. (2021). Hemp (Cannabis sativa L.) seed protein–EGCG conjugates: Covalent bonding and functional research. Foods 10(7), 1618. https://doi.org/10.3390/FOODS10071618

  • Parolia, S., Maley, J., Sammynaiken, R., Green, R., Nickerson, M., & Ghosh, S. (2022). Structure – Functionality of lentil protein-polyphenol conjugates. Food Chemistry, 367, 130603. https://doi.org/10.1016/J.FOODCHEM.2021.130603

  • Penalva, R., Esparza, I., Larraneta, E., González-Navarro, C. J., Gamazo, C., & Irache, J. M. (2015). Zein-based nanoparticles improve the oral bioavailability of resveratrol and its anti-inflammatory effects in a mouse model of endotoxic shock. Journal of Agricultural and Food Chemistry, 63(23), 5603–5611. https://doi.org/10.1021/JF505694E/ASSET/IMAGES/LARGE/JF-2014-05694E_0008.JPEG

    Article  CAS  PubMed  Google Scholar 

  • Pham, L. B., Wang, B., Zisu, B., & Adhikari, B. (2019). Covalent modification of flaxseed protein isolate by phenolic compounds and the structure and functional properties of the adducts. Food Chemistry, 293, 463–471. https://doi.org/10.1016/J.FOODCHEM.2019.04.123

    Article  CAS  PubMed  Google Scholar 

  • Pi, X., Sun, Y., Liu, J., Wang, X., Hong, W., Cheng, J., & Guo, M. (2023). Characterization of the improved functionality in soybean protein-proanthocyanidins conjugates prepared by the alkali treatment. Food Hydrocolloids, 134, 108107. https://doi.org/10.1016/J.FOODHYD.2022.108107

  • Plundrich, N. J., Bansode, R. R., Foegeding, E. A., Williams, L. L., & Lila, M. A. (2017). Protein-bound Vaccinium fruit polyphenols decrease IgE binding to peanut allergens and RBL-2H3 mast cell degranulation in vitro. Food & Function, 8(4), 1611–1621. https://doi.org/10.1039/C7FO00249A

    Article  CAS  Google Scholar 

  • Plundrich, N. J., Cook, B. T., Maleki, S. J., Fourches, D., & Lila, M. A. (2019). Binding of peanut allergen Ara h 2 with Vaccinium fruit polyphenols. Food Chemistry, 284, 287–295. https://doi.org/10.1016/J.FOODCHEM.2019.01.081

    Article  CAS  PubMed  Google Scholar 

  • Podzimek, S. (2011). Light scattering, size exclusion chromatography and asymmetric flow field flow fractionationfractionation: Powerful tools for the characterization of polymers. Proteins and Nanoparticles; John Wiley & Sons: Hoboken, NJ,. https://doi.org/10.1002/9780470877975

  • Quan, T. H., Benjakul, S., Sae-leaw, T., Balange, A. K., & Maqsood, S. (2019). Protein–polyphenol conjugates: Antioxidant property, functionalities and their applications. Trends in Food Science & Technology, 91, 507–517. https://doi.org/10.1016/J.TIFS.2019.07.049

    Article  CAS  Google Scholar 

  • Rai, S., Kureel, A. K., Dutta, P. K., & Mehrotra, G. K. (2018). Phenolic compounds based conjugates from dextran aldehyde and BSA: Preparation, characterization and evaluation of their anti-cancer efficacy for therapeutic applications. International Journal of Biological Macromolecules, 110, 425–436. https://doi.org/10.1016/J.IJBIOMAC.2017.11.049

    Article  CAS  PubMed  Google Scholar 

  • Rani, P., Yu, X., Liu, H., Li, K., He, Y., Tian, H., & Kumar, R. (2021). Material, antibacterial and anticancer properties of natural polyphenols incorporated soy protein isolate: A review. European Polymer Journal, 152, 110494. https://doi.org/10.1016/J.EURPOLYMJ.2021.110494

  • Ribnicky, D. M., Roopchand, D. E., Poulev, A., Kuhn, P., Oren, A., Cefalu, W. T., & Raskin, I. (2014). Artemisia dracunculus L. polyphenols complexed to soy protein show enhanced bioavailability and hypoglycemic activity in C57BL/6 mice. Nutrition, 30(7–8), S4–S10. https://doi.org/10.1016/J.NUT.2014.03.009

  • Rocha, B. A. M., Teixeira, C. S., Silva-Filho, J. C., Nóbrega, R. B., Alencar, D. B., Nascimento, K. S., et al. (2015). Structural basis of ConM binding with resveratrol, an anti-inflammatory and antioxidant polyphenol. International Journal of Biological Macromolecules, 72, 1136–1142. https://doi.org/10.1016/J.IJBIOMAC.2014.08.031

    Article  CAS  PubMed  Google Scholar 

  • Roopchand, D. E., Grace, M. H., Kuhn, P., Cheng, D. M., Plundrich, N., Poulev, A., et al. (2012). Efficient sorption of polyphenols to soybean flour enables natural fortification of foods. Food Chemistry, 131(4), 1193–1200. https://doi.org/10.1016/J.FOODCHEM.2011.09.103

    Article  CAS  PubMed  Google Scholar 

  • Seczyk, L., Swieca, M., Kapusta, I., & Gawlik-Dziki, U. (2019). Protein–Phenolic interactions as a factor affecting the physicochemical properties of white bean proteins. Molecules, 24(3), 408. https://doi.org/10.3390/MOLECULES24030408

  • Santos, T. M., de Souza Filho, M., & S. M., Muniz, C. R., Morais, J. P. S., Kotzebue, L. R. V., Pereira, A. L. S., & Azeredo, H. M. C. (2017). Zein films with unoxidized or oxidized tannic acid. Journal of the Science of Food and Agriculture, 97(13), 4580–4587. https://doi.org/10.1002/JSFA.8327

    Article  CAS  PubMed  Google Scholar 

  • Shahidi, F., & Dissanayaka, C. S. (2023). Phenolic - protein interactions : Insight from in - silico analyses – a review. Food Production, Processing and Nutrition. https://doi.org/10.1186/s43014-022-00121-0

    Article  Google Scholar 

  • Silva, C., Correia-Branco, A., Andrade, N., Ferreira, A. C., Soares, M. L., Sonveaux, P., et al. (2019). Selective pro-apoptotic and antimigratory effects of polyphenol complex catechin:lysine 1:2 in breast, pancreatic and colorectal cancer cell lines. European Journal of Pharmacology, 859, 172533. https://doi.org/10.1016/J.EJPHAR.2019.172533

  • Sui, X., Sun, H., Qi, B., Zhang, M., Li, Y., & Jiang, L. (2018). Functional and conformational changes to soy proteins accompanying anthocyanins: Focus on covalent and non-covalent interactions. Food Chemistry, 245, 871–878. https://doi.org/10.1016/J.FOODCHEM.2017.11.090

    Article  CAS  PubMed  Google Scholar 

  • Sun, S., Jiang, T., Gu, Y., Yao, L., Du, H., Luo, J., & Che, H. (2023). Contribution of five major apple polyphenols in reducing peanut protein sensitization and alleviating allergencitiy of peanut by changing allergen structure. Food Research International, 164, 112297. https://doi.org/10.1016/J.FOODRES.2022.112297

  • Tavares, W. de S., Pena, G. R., Martin-Pastor, M., & Sousa, F. F. O. de. (2021). Design and characterization of ellagic acid-loaded zein nanoparticles and their effect on the antioxidant and antibacterial activities. Journal of Molecular Liquids, 341, 116915. https://doi.org/10.1016/J.MOLLIQ.2021.116915

  • Wan, Z. L., Wang, J. M., Wang, L. Y., Yuan, Y., & Yang, X. Q. (2014). Complexation of resveratrol with soy protein and its improvement on oxidative stability of corn oil/water emulsions. Food Chemistry, 161, 324–331. https://doi.org/10.1016/J.FOODCHEM.2014.04.028

    Article  CAS  PubMed  Google Scholar 

  • Wang, Q., Tang, Y., Yang, Y., Zhao, J., Zhang, Y., Li, L., et al. (2020). Interaction between wheat gliadin and quercetin under different pH conditions analyzed by multi-spectroscopy methods. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 229, 117937. https://doi.org/10.1016/J.SAA.2019.117937

  • Wang, Y. H., Wan, Z. L., Yang, X. Q., Wang, J. M., Guo, J., & Lin, Y. (2016). Colloidal complexation of zein hydrolysate with tannic acid: Constructing peptides-based nanoemulsions for alga oil delivery. Food Hydrocolloids, 54, 40–48. https://doi.org/10.1016/J.FOODHYD.2015.09.020

    Article  CAS  Google Scholar 

  • Xu, Yanan, Wei, Z., Xue, C., & Huang, Q. (2022). Assembly of zein–polyphenol conjugates via carbodiimide method: Evaluation of physicochemical and functional properties. LWT, 154, 112708. https://doi.org/10.1016/J.LWT.2021.112708

  • Xu, Y., Dai, T., Li, T., Huang, K., Li, Y., Liu, C., & Chen, J. (2019). Investigation on the binding interaction between rice glutelin and epigallocatechin-3-gallate using spectroscopic and molecular docking simulation. Spectrochimica Acta Part a: Molecular and Biomolecular Spectroscopy, 217, 215–222. https://doi.org/10.1016/J.SAA.2019.03.091

    Article  CAS  PubMed  Google Scholar 

  • Xue, F., Li, C., & Adhikari, B. (2020). Physicochemical properties of soy protein isolates-cyanidin-3-galactoside conjugates produced using free radicals induced by ultrasound. Ultrasonics Sonochemistry, 64, 104990. https://doi.org/10.1016/J.ULTSONCH.2020.104990

  • Xue, F., Zhao, M., Liu, X., Chu, R., Qiao, Z., Li, C., & Adhikari, B. (2021). Physicochemical properties of chitosan/zein/essential oil emulsion-based active films functionalized by polyphenols. Future Foods, 3, 100033. https://doi.org/10.1016/J.FUFO.2021.100033

  • Yan, S., Xie, F., Zhang, S., Jiang, L., Qi, B., & Li, Y. (2021). Effects of soybean protein isolate − polyphenol conjugate formation on the protein structure and emulsifying properties: Protein − polyphenol emulsification performance in the presence of chitosan. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 609, 125641. https://doi.org/10.1016/J.COLSURFA.2020.125641

  • Yan, X., Zhao, J., Zeng, Z., Ma, M., Xia, J., Tian, W., et al. (2022). Effects of preheat treatment and polyphenol grafting on the structural, emulsifying and rheological properties of protein isolate from Cinnamomum camphora seed kernel. Food Chemistry, 377, 132044. https://doi.org/10.1016/J.FOODCHEM.2022.132044

  • Yang, C., Wang, B., Wang, J., Xia, S., & Wu, Y. (2019). Effect of pyrogallic acid (1,2,3-benzenetriol) polyphenol-protein covalent conjugation reaction degree on structure and antioxidant properties of pumpkin (Cucurbita sp.) seed protein isolate. LWT, 109, 443–449. https://doi.org/10.1016/J.LWT.2019.04.034

    Article  CAS  Google Scholar 

  • Yi, F., Wu, K., Yu, G., & Su, C. (2021). Preparation of pickering emulsion based on soy protein isolate-gallic acid with outstanding antioxidation and antimicrobial. Colloids and Surfaces B: Biointerfaces, 206, 111954. https://doi.org/10.1016/J.COLSURFB.2021.111954

  • Zhang, Q., Cheng, Z., Wang, Y., & Fu, L. (2021). Dietary protein-phenolic interactions: Characterization, biochemical-physiological consequences, and potential food applications. Critical Reviews in Food Science and Nutrition, 61(21), 3589–3615. https://doi.org/10.1080/10408398.2020.1803199

    Article  CAS  PubMed  Google Scholar 

  • Zhang, X., Xiong, Y. L., Chen, J., & Zhou, L. (2014). Synergy of licorice extract and pea protein hydrolysate for oxidative stability of soybean oil-in-water emulsions. Journal of Agricultural and Food Chemistry, 62(32), 8204–8213. https://doi.org/10.1021/JF5016126/ASSET/IMAGES/LARGE/JF-2014-016126_0005.JPEG

    Article  CAS  PubMed  Google Scholar 

  • Zhou, S. D., Huang, L., Meng, L., Lin, Y. F., Xu, X., & Dong, M. S. (2020). Soy protein isolate -(-)-epigallocatechin gallate conjugate: Covalent binding sites identification and IgE binding ability evaluation. Food Chemistry, 333, 127400. https://doi.org/10.1016/J.FOODCHEM.2020.127400

  • Zou, Y. C., Wu, C. L., Ma, C. F., He, S., Brennan, C. S., & Yuan, Y. (2019). Interactions of grape seed procyanidins with soy protein isolate: Contributing antioxidant and stability properties. LWT, 115, 108465. https://doi.org/10.1016/J.LWT.2019.108465

Download references

Acknowledgements

The material is based upon work supported by CSIR-Indian Institute of Integrative Medicine and Indian Council of Medical Research, Government of India.

Author information

Authors and Affiliations

Authors

Contributions

Mehnaza Manzoor: conceptualization, investigation, writing—original draft, data curation, funding acquisition; Zaria Fozonne Ngabou Tchameni: writing—original draft, writing—review and editing; Zuhaib F. Bhat: investigation, writing—review and editing; Amit K. Jaiswal: investigation, writing—review and editing; Sundeep Jaglan: supervision, funding acquisition, project administration.

Corresponding authors

Correspondence to Mehnaza Manzoor or Sundeep Jaglan.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manzoor, M., Tchameni, Z.F.N., Bhat, Z.F. et al. Recent Insights on the Conformational Changes, Functionality, and Physiological Properties of Plant-Based Protein–Polyphenol Conjugates. Food Bioprocess Technol (2023). https://doi.org/10.1007/s11947-023-03212-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11947-023-03212-z

Keywords

Navigation