Skip to main content
Log in

Thermal Behavior of Polyester Composites Reinforced with Green Sugarcane Bagasse Fiber

  • Characterization of Green Materials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Natural fibers such as those from sugarcane bagasse may be obtained as industrial waste products. These fibers have recently been investigated as low-cost reinforcements in composites for engineering applications, some of which may require exposure to temperatures above ambient. In the present work, fibers extracted from sugarcane bagasse were used at up to 30 vol.% as reinforcement in polyester-matrix composites. The thermal behavior of these composites was investigated by thermogravimetric analysis (TGA) and derivative thermogravimetry (DTG) as well as dynamic mechanical analysis (DMA) and differential scanning calorimetry (DSC). TGA/DTG results indicated similar limits of thermal stability at about 200°C for the neat polyester and the bagasse fiber composites. The thermal degradation peak at around 370°C was also similar, being attributed mainly to polyester. DSC analysis revealed that bagasse fiber incorporation caused only a minor change in the glass-transition temperature. On the contrary, DMA parameters revealed notable changes attributed to effect of the bagasse fibers on the viscous stiffness and damping capacity of the polyester.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Reproduced with permission from Ref. 27

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. K.G. Satyanarayana, J.L. Guimarães, and F. Wypych, Compos. Part A 38, 1694 (2007).

    Article  Google Scholar 

  2. J. Crocker, Mater. Technol. 2–3, 174 (2008).

    Article  Google Scholar 

  3. M.J. John and S. Thomas, Carbohydr. Polym. 71, 343 (2008).

    Article  Google Scholar 

  4. S.N. Monteiro, F.P.D. Lopes, A.S. Ferreira, and D.C.O. Nascimento, JOM 61 (1), 17 (2009).

    Article  Google Scholar 

  5. S.N. Monteiro, F.P.D. Lopes, A.P. Barbosa, A.B. Bevitori, I.L.A. da Silva, and L.L. da Costa, Metall. Mater. Trans. A 42, 2963 (2011).

    Article  Google Scholar 

  6. O. Faruk, A.K. Bledzki, H.P. Fink, and M. Sain, Progr. Polym. Sci. 37, 1555 (2012).

    Article  Google Scholar 

  7. V.K. Thakur, M.K. Thakur, and R.K. Gupta, Int. J. Polym Anal. Charact. 19, 256 (2014).

    Article  Google Scholar 

  8. O. Güven, S.N. Monteiro, E.A.B. Moura, and J.W. Drelich, Polym. Rev. 56, 702 (2016).

    Article  Google Scholar 

  9. K.L. Pickering, M.G.A. Efendy, and T.M. Le, Compos. Part A 83, 98 (2016).

    Article  Google Scholar 

  10. J. Holbery and D. Houston, JOM 58 (11), 80 (2006).

    Article  Google Scholar 

  11. R. Zah, R. Hischier, A.L. Leão, and I. Braun, J. Clean. Prod. 15, 1032 (2007).

    Article  Google Scholar 

  12. N. Thomas, S.A. Paul, L.A. Pothan, and B. Deepa, Natural fibers: structure, properties and application.Cellulose Fibers: Bio- and Nano-Polymer Composites, ed. S. Kalia, B.S. Kaith, and I. Kaur (Berlin: Springer, 2011), p. 3.

    Chapter  Google Scholar 

  13. P. Wambua, J. Ivens, and I. Verpoest, Compos. Sci. Technol. 63, 1259 (2003).

    Article  Google Scholar 

  14. S.V. Joshi, L.T. Drzal, A.K. Mohanty, and S. Arora, Compos. Part A 35, 371 (2004).

    Article  Google Scholar 

  15. N.O.R. Maciel, J. Ferreira, J.S. Vieira, C.G.D. Ribeiro, F.P.D. Lopes, F.M. Margem, and S.N. Monteiro, J. Mater Res. Technol. (2018) accepted for publication.

  16. Z. Benzait and L. Trabzon, J. Compos. Mater. (2018). https://doi.org/10.1177/0021998318764002.

    Article  Google Scholar 

  17. N.H. Ravindranath, P. Balachandra, S. Dasappa, and R.K. Usha, Biomass Bioenergy 30, 826 (2006).

    Article  Google Scholar 

  18. Y. Lei, Q. Wu, F. Yao, and Y. Xu, Compos. Part A 38, 1664 (2007).

    Article  Google Scholar 

  19. Y. Habibi, W.K. El-Zawawy, M.M. Ibrahim, and A. Dufresne, Compos. Sci. Technol. 68, 1877 (2008).

    Article  Google Scholar 

  20. V. Vilay, M. Mariatti, R. Mattaib, and M. Todo, Compos. Sci. Technol. 68, 631 (2008).

    Article  Google Scholar 

  21. D.R. Mulinari, H.J.C. Voorwald, M.A.H. Cioffi, M.L.C.P. Silva, and S.M. Luz, Carbohydr. Polym. 75, 317 (2009).

    Article  Google Scholar 

  22. M.A.S. Spinacé, C.S. Lambert, K.K.G. Fermoselli, and M. De Paoli, Carbohydr. Polym. 77, 47 (2009).

    Article  Google Scholar 

  23. S.M. Luz, A. Caldeira-Pires, and P.M.C. Ferrão, Resour. Conserv. Recycl. 54, 1135 (2010).

    Article  Google Scholar 

  24. E.F. Cerqueira, C.A.R.P. Baptista, and D.R. Mulinari, Eng. Proc. 10, 2046 (2011).

    Article  Google Scholar 

  25. D. Verma, P.C. Gope, M.K. Maheshwari, and R.K. Sharma, J. Mater. Environ. Sci. 3, 1079 (2012).

    Google Scholar 

  26. A. Moubarik, N. Grimi, and N. Boussetta, Compos. Part B. 52, 233 (2013).

    Article  Google Scholar 

  27. S.N. Monteiro, V.S. Candido, F.O. Braga, L.T. Bolzan, R.P. Weber, and J.W. Drelich, Eur. Polym. J. 78, 173 (2016).

    Article  Google Scholar 

  28. G. Odian, Principles of Polymerization (New York: Wiley, 1991).

    Google Scholar 

  29. E.M.S. Sanchez, C.A.C. Zavaglia, and M.I. Felisberti, Polymer 41, 765 (2000).

    Article  Google Scholar 

  30. L.U. Devi, S.S. Bhagawan, and S. Thomas, Polym. Compos. 32, 1741 (2011).

    Article  Google Scholar 

  31. N. Venkateshwaran, A.E. Perumal, and R.H.A. Raj, J. Polym. Environ. 20, 565 (2012).

    Article  Google Scholar 

  32. N. Venkateshwaran, A.E. Perumal, and D. Arunsundaranayagam, Mater. Des. 47, 151 (2013).

    Article  Google Scholar 

  33. S.M.S. Kumar, D. Duraibabu, and K. Subramaniann, Mater. Des. 59, 63 (2014).

    Article  Google Scholar 

  34. A. Etaati, S. Pather, Z. Fang, and H. Wang, Compos. Part B 62, 19 (2014).

    Article  Google Scholar 

  35. C.S.M.F. Costa, A.C. Fonseca, A.C. Serra, and J.F.J. Coelho, Polym. Rev. 56, 362 (2016).

    Article  Google Scholar 

  36. R.E. Wetton, Developments in Polymer Characterization, ed. J.V. Dawkins (London: Elsevier, 1986), p. 179.

    Google Scholar 

  37. W. Shlesing, M. Buhk, and M. Osterhold, Prog. Org. Coat. 49, 197 (2004).

    Article  Google Scholar 

  38. M.T. Shaw and W.J. MacKnight, Introduction to Polymer Viscoelasticity (Hoboken, NJ: Wiley, 2005).

    Book  Google Scholar 

  39. S. Mohanty, S.K. Verma, and S.K. Nayak, Compos. Sci. Technol. 66, 538 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Brazilian agencies CNPq, FAPERJ, and CAPES for support of this investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernanda Santos da Luz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Luz, F.S., Candido, V.S., da Silva, A.C.R. et al. Thermal Behavior of Polyester Composites Reinforced with Green Sugarcane Bagasse Fiber. JOM 70, 1965–1971 (2018). https://doi.org/10.1007/s11837-018-3086-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-018-3086-7

Navigation