Skip to main content
Log in

The questionable role of a microsomal °8 acyl-CoA-dependent desaturase in the biosynthesis of polyunsaturated fatty acids

  • Published:
Lipids

Abstract

Several experimental approaches were used to determine whether rat liver and testes express an acyl-CoA-dependent δ8 desaturase. When [1-14C]5, 11, 14-eicosatrienoic acid was injected via the tail vein, or directly into testes, it was incorporated into liver and testes phospholipids, but it was not metabolized to other labeled fatty acids. When [1-14C]11, 14-eicosadienoic acid was injected, via the tail vein or directly into testes, or incubated with microsomes from both tissues, it was only metabolized to 5,11, 14-eicosatrienoic acid. When ethyl 5,5,11,11,14,14-d6-5,11,14-eicosatrienoate was fed to rats maintained on a diet devoid of fat, it primarily replaced esteri-fied 5,8,11-eicosatrienoic acid, but not arachidonic acid. No labeled linoleate or arachidonate were detected. Dietary ethyl linoleate and ethyl 19,19,20,20-d4-1,2-13C-11,14-eicosadienoate were about equally effective as precursors of esterified arachidonate. The doubly labeled 11,14-eicosadienoate was metabolized primarily by conversion to 17,17,18,18-d4-9,12-ocatdeca-dienoic acid, followed by its conversion to yield esterified arachidonate, with a mass four units greater than endogenous arachidonate. In addition, the doubly labeled substrate gave rise to a small amount of arachidonate, six mass units greater than endogenous arachidonate. No evidence was obtained, with the radiolabeled substrates, for the presence of a δ8 desaturase. However, the presence of an ion, six mass units greater than endogenous arachidonate when doubly labeled 11, 14-eicosa-dienoate was fed, suggests that a small amount of the substrate may have been metabolized by the sequential use of δ8 and δ5 desaturases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

GC-MS:

gas chromatography-mass spectrometry

HPLC:

high-performance liquid chromatography

NADPH:

reduced nicotinamide adenine dinucleotide phosphate

References

  1. Klenk, E., and Mohrhauer, H. (1960) Untersuchungen über den Stoffwechsel der Polyenfettsäuren bei der Ratte, Hoppe-Seyler’s Z. Physiol. Chem. 320, 218–232.

    PubMed  CAS  Google Scholar 

  2. Stoffel, W. (1963) Der Stoffwechsel der Ungesättigen Fettsauren, I Zur Biosynthese Hochungesättigter Fettsäuren, Hoppe-Seyler’s Z. Physiol. Chem. 333, 71–88.

    PubMed  CAS  Google Scholar 

  3. Stoffel, W., and Ach, K.-L. (1964) Der Stoffwechsel der Ungesättigen Fettsäuren, II Eigenschaften des Kettenver-längernden Enzyms Zur Frage der Biohydrogenierung der Ungesättigten Fettsauren, Hoppe-Seyler’s Z. Physiol. Chem. 337, 123–132.

    PubMed  CAS  Google Scholar 

  4. Ullman, D., and Sprecher, H. (1971) An In Vitro and In Vivo Study of the Conversion of Eicosa-11,14-dienoic Acid to Eicosa-5,11,14-trienoic Acid and the Conversion of Eicosa-11-enoic Acid to Eicosa-5,11-dienoic Acid, Biochim. Biophys. Acta 248, 186–197.

    PubMed  CAS  Google Scholar 

  5. Sprecher, H., and Lee, C.-J. (1975) The Absence of an 8-Desaturase in Rat Liver: A Reevaluation of Optional Pathways for the Metabolism of Linoleic and Linolenic Acids, Biochim. Biophys, Acta 388, 113–125.

    CAS  Google Scholar 

  6. Dhopeshwarkar, G.A., and Subramanian, C. (1976) Intracranial Conversion of Linoleic Acid to Arachidonic Acid: Evidence for Lack of Δ8 Desaturase in the Brain, J. Neutrochem. 26, 1175–1179.

    Article  CAS  Google Scholar 

  7. Dhopeshwarkar, G.A., and Subramanian, C. (1976) Biosynthesis of Polyunsaturated Fatty Acids in the Developing Brain II. Metabolic Transformations of Intracranially Administered [3-14C] Eicosatrienoic Acid, Evidence for Lack of Δ8 Desaturase, Lipids 11, 689–692.

    CAS  Google Scholar 

  8. Alaniz, M.J.T. de, Gómez Dumm, I.N.T. de, and Brenner, R.R. (1976) The Action of Insulin and Bibutyryl Cyclic AMP on the Biosynthesis of Polyunsaturated Acids of the α-Linolenic Acid Family in HTC Cells, Mol. Cell Biochem. 12, 3–8.

    Article  PubMed  Google Scholar 

  9. Alaniz, M.J.T. de, and Brenner, R.R. (1976) Effect of Different Carbon Sources on the Biosynthesis of Polyunsaturated Fatty Acids of the α-Linolenic Acid Family in Culture of Minimal Deviation Hepatoma 7288 Cells, Mol. Cell Biochem. 12, 81–87.

    Article  PubMed  Google Scholar 

  10. Maeda, M., Doi, O., and Akamatsu, Y. (1978) Metabolic Conversions of Polyunsaturated Fatty Acids in Mammalian Cells, Biochim. Biophys. Acta 530, 153–164.

    PubMed  CAS  Google Scholar 

  11. Naval, J., Martínez-Lorenzo, M.J., Marzo, I., Desportes, P., and Piñeiro, A. (1993) Alternative Route for the Biosynthesis of Polyunsaturated Fatty Acids in K562 Cells, Biochem. J. 281, 841–845.

    Google Scholar 

  12. Albert, D.H., and Coniglio, J.G. (1977) Metabolism of Eicosa-11, 14-dienoic Acid in Rat Testes Evidence for Δ8-Desaturase Activity, Biochim. Biophys. Acta 489, 390–396.

    PubMed  CAS  Google Scholar 

  13. Albert, D.H., Rhamy, R.K., and Coniglio, J.G. (1979) Desaturation of Eicosa-11,14-dienoic Acid in Human Testes, Lipids 14, 498–500.

    PubMed  CAS  Google Scholar 

  14. Nagazawa, I., and Mead, J.F. (1976) In Vitro Activity of the Fatty Acyl Desaturases of Human Cancerous and Noncancerous Tissues, Lipids 11, 79–82.

    Google Scholar 

  15. Cook, H.W., Byers, D.M., Palmer, F.B.St.C., Spence, M.W., Rakoff, H., Duval, S.M., and Emken, E.A. (1992) Alternate Pathways in the Desaturation and Chain Elongation of Linolenic Acid, 18∶3 (n−3), in Cultured Glioma Cells, J. Lipid Res. 32, 1265–1273.

    Google Scholar 

  16. Schenck, P.A., Rakoff, H., and Emken E.A. (1996) Δ8 Desaturation in vivo of Deuterated Eicosatrienoic Acid by Mouse Liver, Lipids 31, 593–600.

    Article  PubMed  CAS  Google Scholar 

  17. Takagi, T. (1965) The Dehydrogenation of All-cis-5,11,14-Eicosatrienoic Acid to Arachidonic Acid, Bull. Chem. Soc. Jpn. 38, 2055–2057.

    Article  CAS  Google Scholar 

  18. Schlenk, H., Sand, D.M., and Gellerman, J.L. (1970) Nonconversion of 5,11,14-Eicosatrienoic Acid into Arachidonic Acid by Rats, Lipids 5, 575–577.

    PubMed  CAS  Google Scholar 

  19. Evans, R.W., and Sprecher, H. (1985) Total Synthesis and Spectral Characterization of 5,8,14-Icosatrienoic Acid and 5,11,14-Icosatrienoic Acid, Chem. Phys. Lipids 38, 327–342.

    Article  PubMed  CAS  Google Scholar 

  20. Sprecher, H., and Sankarappa, S. (1982) Synthesis of Radiolabeled Fatty Acids, Methods Enzymol. 86, 357–366.

    Article  CAS  Google Scholar 

  21. Luthria, D.L., and Sprecher, H. (1993) Synthesis of Ethyl Arachidonate-19,19,20,20-d4 and Ethyl Dihomo-γ-linolenate-19, 19,20,20,-d4, Lipids 28, 853–856.

    PubMed  CAS  Google Scholar 

  22. Folch, J., Lees, M., and Sloane Stanley, G.H. (1957) A Simple Method for the Isolation and Purification of Total Lipids from Animal Tissue, J. Biol. Chem. 226, 497–509.

    PubMed  CAS  Google Scholar 

  23. Bernert, J.T., and Sprecher, H. (1975) Studies to Determine the Role Rates of Chain Elongation and Desaturation Play in Regulating the Unsaturated Fatty Acid Composition of Rat Liver Phospholipids, Biochim. Biophys. Acta 398, 354–363.

    PubMed  Google Scholar 

  24. Hadjiagapiou, C., and Spector, A.A. (1987) Docosahexaenoic Acid Metabolism and Effect on Prostacyclin Production in Endothelial Cells, Arch. Biochem. Biophys. 253, 1–12.

    Article  PubMed  CAS  Google Scholar 

  25. Brenner, R.R., and Peluffo, R.O. (1966) Effect of Saturated and Unsaturated Fatty Acids on the Desaturation In Vitro of Palmitic, Stearic, Oleic, Linoleic and Linolenic Acids, J. Biol. Chem. 241, 5213–5219.

    PubMed  CAS  Google Scholar 

  26. Holman, R.T. (1986) Nutritional and Biochemical Evidences of Acyl Interaction with Respect to Essential Fatty Acids, Prog. Lipid. Res. 25, 29–39.

    Article  PubMed  CAS  Google Scholar 

  27. Dunbar, L.M., and Bailey, J.M. (1975) Enzyme Deletions and Essential Fatty Acid Metabolism in Cultured Cells, J. Biol. Chem. 250, 1152–1153.

    CAS  Google Scholar 

  28. Cho, H.P., Nakamura, M.T., and Clarke, S.D. (1999) Cloning, Expression, and Nutritional Regulation of the Mammalian δ-6 Desaturase, J. Biol. Chem. 274, 471–477.

    Article  PubMed  CAS  Google Scholar 

  29. Aki, T., Shimada, Y., Inagaki, K., Higashimoto, H., Kawamoto, S., Shigeta, S., and Suzuki, O. (1999) Molecular Cloning and Functional Characterization of Rat Delta-6 Fatty Acid Desaturase, FEBS Lett. 255, 575–579.

    CAS  Google Scholar 

  30. Napier, J.A., Hey, S.J., Lacey, D.J., and Shewry, P.R. (1998) Identification of a Caerorhabditis elegans Δ6-Fatty-acid-desaturase by Heterologous Expression in Saccharomyces cerevisiae, Biochem. J. 330, 611–614.

    PubMed  CAS  Google Scholar 

  31. Michaelson, L.V., Napier, J.A., Lewis, M., Griffiths, G., Lazarus, C.M., and Stobart, A.K. (1998) Functional Identification of a Fatty Acid Delta 5 Desaturase Gene from Caerorhabditis elegans, FEBS Lett. 439, 215–218.

    Article  PubMed  CAS  Google Scholar 

  32. Watts, J.L., and Browse, J. (1999) Isolation and Characterization of a Δ5-Fatty Acid Desaturase from Caerorhabditis elegans, Arch. Biochem. Biophys. 362, 175–182.

    Article  PubMed  CAS  Google Scholar 

  33. Bridges, R.B., and Coniglio, J.G. (1970) The Metabolism of Linoleic and Arachidonic Acids in Rat Testes, Lipids 5, 628–635.

    PubMed  CAS  Google Scholar 

  34. Wallis, J.G., and Browse, J. (1999) The Δ8-Desaturase of Euglena gracilis: An Alternate Pathway for Synthesis of 20-Carbon Polyunsaturated Fatty Acids, Arch. Biochem. Biophys. 365, 307–316.

    Article  PubMed  CAS  Google Scholar 

  35. Lands, W.E.M., Inoue, M., Sugiura, Y., and Okuyama, H. (1982) Selective Incorporation of Polyunsaturated Fatty Acids into Phosphatidylcholine by Rat Liver Microsomes, J. Biol. Chem. 257, 14968–14972.

    PubMed  CAS  Google Scholar 

  36. Dircks, L., and Sul, H.S. (1999) Acyltransferases of de novo Glycerophospholipid Biosynthesis, Prog. Lipid Res. 38, 461–479.

    Article  PubMed  CAS  Google Scholar 

  37. Christensen, E., Woldseth, B., Hagve, T.-A., Poll-The, B.T., Wanders, R.J.A., Sprecher, H., Stokke, O., and Christopherson, B.O. (1993) Peroxisomal β-Oxidation of Polyunsaturated Fatty Acids in Human Fibroblasts. The Polyunsaturated and the Saturated Long Chain Fatty Acids are Retroconverted by the Same Acyl-CoA Oxidase, Scand. J. Clin. Lab. Invest. 536 (Suppl. 215), 61–74.

    Google Scholar 

  38. Moore, S.A., Hurt, E., Yoder, E., Sprecher, H., and Spector, A.A. (1995) Docosahexaenoic Acid Synthesis in Human Skin Fibroblasts Involves Peroxisomal Retroconversion of Tetracosa-hexaenoic Acid, J. Lipid. Res. 36, 2433–2443.

    PubMed  CAS  Google Scholar 

  39. Kunau, W.-H., Dommes, V., and Schulz, H. (1995) Beta-Oxidation of Fatty Acids in Mitochondria, Peroxisomes and Bacteria: a Century of Continued Progress, Prog. Lipid Res. 34, 267–342.

    Article  PubMed  CAS  Google Scholar 

  40. He, X.-Y., Shourky, K., Chu, C., Yang, J., Sprecher, H., and Schulz, H. (1995) Peroxisomes Contain Δ3,52,4-dienoyl-CoA Isomerase and Thus Possess All Enzymes Required for the β-Oxidation of Unsaturated Fatty Acids by a Novel Reductase-Dependent Pathway, Biochem. Biophys. Res. Commun. 2215, 15–21.

    Article  Google Scholar 

  41. Geisbrecht, B.V., Liang, X., Morrell, J.C., Schulz, H., and Gould, S.J. (1999) The Mouse Gene PDCR Encodes a Peroxisomal Delta (2), Delta (4)-dienoyl-CoA Reductase, J. Biol. Chem. 274, 25814–25820.

    Article  PubMed  CAS  Google Scholar 

  42. Tserng, K.-Y., Jin, S.-J., and Chen, L.-S. (1996) Reduction Pathway of cis-5 Unsaturated Fatty Acids in Intact Rat-liver and Ratheart Mitochondria: Assessment with Stable-Isotope-Labelled Substrates, Biochem. J. 313, 581–588.

    PubMed  CAS  Google Scholar 

  43. Shoukry, K., and Schulz, H. (1998) Significance of the Reductase-Dependent Pathway for the Beta-Oxidation of Unsaturated Fatty Acids with Odd-Numbered Double Bonds Mitochondrial Metabolism of 2-trans-5-cis-Octadienoyl-CoA, J. Biol. Chem. 273, 6892–6899.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Howard Sprecher.

About this article

Cite this article

Chen, Q., Yin, F.Q. & Sprecher, H. The questionable role of a microsomal °8 acyl-CoA-dependent desaturase in the biosynthesis of polyunsaturated fatty acids. Lipids 35, 871–879 (2000). https://doi.org/10.1007/S11745-000-0596-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/S11745-000-0596-9

Keywords

Navigation