Skip to main content
Log in

Electrospray ionization mass spectrometric analyses of changes in tissue phospholipid molecular species during the evolution of hyperlipidemia and hyperglycemia in Zucker diabetic fatty rats

  • Published:
Lipids

Abstract

The Zucker diabetic fatty (ZDF) rat is a genetic model of type II diabetes mellitus in which males homozygous for nonfunctional leptin receptors (fa/fa) develop obesity, hyperlipidemia, and hyperglycemia, but rats homozygous for normal receptors (+/+) remain lean and normoglycemic. Insulin resistance develops in young fa/fa rats and is followed by evolution of an insulin secretory defect that triggers hyperglycemia. Because insulin secretion and insulin sensitivity are affected by membrane phospholipid fatty acid composition, we have determined whether metabolic abnormalities in fa/fa rats are associated with changes in tissue phospholipids. Electrospray ionization mass spectrometric analyses of glycerophosphocholine (GPC) and glycerophosphoethanolamine (GPE) molecular species from tissues of prediabetic (6 wk of age) and overtly diabetic (12 wk) fa/fa rats and from +/+ rats of the same ages indicate that arachidonate-containing species from heart, aorta, and liver of prediabetic fa/fa rats made a smaller contribution to GPC total ion current than was the case for +/+ rats. There was a correspondingly larger contribution from species with sn-2 oleate or linoleate substituents in fa/fa heart and aorta. The relative contributions of arachidonate-containing GPC species increased in these tissues as fa/fa rats aged and were equal to or greater than those for +/+ rats by 12 wk. For heart and aorta, relative contributions from GPE species with sn-2 arachidonate or docosahexaenoate substituents to the total ion current increased and those from species with sn-2 oleate or linoleate substituents fell as fa/fa rats aged, but these tissue lipid profiles changed little with age in +/+ rats. GPC and GPE profiles for brain, kidney, sciatic nerve, and red blood cells were similar among fa/fa and +/+ rats at 6 and 12 wk or age, and pancreatic islets from fa/fa and +/+ rats exhibited similar GPC and GPE profiles at 12 wk of age. Under-representation of arachidonate-containing GPC and GPE species in some fa/fa rat tissues at 6 wk could contribute to insulin resistance, but depletion of islet arachidonate-containing GPC and GPE species is unlikely to explain the evolution of the insulin secretory defect that is well-developed by 12 wk of age.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CAD:

collisionally activated dissociation

ESI:

electrospray ionization

GPC:

glycerophosphocholine

GPE:

glycerophosphoethanolamine

HPLC:

high-performance liquid chromatography

IDDM:

insulin-dependent diabetes mellitus

NIDDM:

non-insulin-dependent diabetes mellitus

NP:

normal phase

MS:

mass spectrometry

PBS:

phosphate-buffered saline

ZDF:

Zucker diabetic fatty

References

  1. Peterson, R.G., Shaw, W.N., Neal, M., Little, L.A., and Eichberg, J. (1990) Zucker Diabetic Fatty Fat as a Model for Non-insulin-dependent Diabetes Mellitus, ILAR News 32, 16–19.

    Google Scholar 

  2. Sturis, J., Pugh, W.L., Tang, J., Ostrega, D.M., Polonsky, J.S., and Polonsky, K.S. (1994) Alterations in Pulsatile Insulin Secretion in the Zucker Diabetic Fatty Rat, Am. J. Physiol. 267, E250-E259.

    PubMed  CAS  Google Scholar 

  3. Lee, Y., Hirose, H., Ohneda, M., Johnson, J.H., McGarry, J.D., and Unger, R.H. (1994) Beta-Cell Lipotoxicity in the Pathogenesis of Non-insulin-Dependent Diabetes Mellitus of Obese Rats. Impairment in Adipocyte-beta-cell Relationships, Proc. Natl. Acad. Sci. USA 91, 10878–10882.

    Article  PubMed  CAS  Google Scholar 

  4. Tokuyama, T., Sturis, J., DePaoli, A.M., Takeda, J., Stoffel, M., Tang, J., Sun, X., Polonsky, K., and Bell, G.I. (1995) Evolution of β-Cell Dysfunction in the Male Zucker Diabetic Fatty Rat, Diabetes 44, 1447–1457.

    PubMed  CAS  Google Scholar 

  5. Milburn, J.L., Hirose, H., Lee, Y.H., Nagasawa, Y., Oguwa, A., Ohneda, M., BeltrandelRiio, H., Newgard, C.B., Johnson, J.H., and Unger, R.H. (1995) Pancreatic Beta Cells in Obesity. Evidence for Induction of Functional Morphololgic and Metabolic Abnormalities by Increased Long-Chain Fatty Acids, J. Biol. Chem. 270, 1295–1299.

    Article  PubMed  CAS  Google Scholar 

  6. Phillips, M.S., Liu, Q., Hammond, H.A., Dugan, V., Hey, P.J., Caskey, C.T., and Hess, J.F. (1996) Leptin Receptor Missense Mutation in the Fatty Zucker Rat, Nature Gen. 13, 18–19.

    Article  CAS  Google Scholar 

  7. Iida, M., Murakami, T., Ishida, K., Mizuno, Z., Kuwajima, M., and Shima, K. (1996) Substitution at Codon 269 (glutamine to proline) of the Leptin Receptor cDNA Is the Only Mutation Found in the Zucker Fatty (fa/fa) Rat, Biochem. Biophys. Res. Commun 224, 567–604.

    Article  Google Scholar 

  8. Hirose, H., Lee, Y.H., Inman, L.R., Nagasawa, Y., Johnson, J.H., and Unger, R.H. (1996) Detective Fatty Acid-Mediated Beta-Cell Compensation in Zucker Diabetic Fatty Rats. Pathogenic Implications for Obesity-Dependent Diabetes, J. Biol. Chem. 271, 5633–5637.

    Article  PubMed  CAS  Google Scholar 

  9. Lee, Y., Hirose, H., Zhou, Y.-T., Esser, V., McGarry, J.D., and Unger, R.H. (1997) Increased Lipogenic Capacity of the Islets of Obese Rats. A Role in the Pathogenesis of NIDDM, Diabetes 46, 408–413.

    PubMed  CAS  Google Scholar 

  10. Cockburn, B.N., Ostrega, D.M., Sturis, J., Kubstrap, C., Polonsky, K.S., and Bell, G.I. (1997) Changes in Pancreatic Islet Glucokinase and Hexokinase Activities with Increasing Age, Obesity, and the Onset of Diabetes, Diabetes 46, 1434–1439.

    PubMed  CAS  Google Scholar 

  11. Shimabukuro, M., Ohneda, M., Lee, Y., and Unger, R. (1997) Role of Nitric Oxide in Obesity-Induced Beta-Cell Disease, J. Clin. Invest. 100, 290–295.

    PubMed  CAS  Google Scholar 

  12. Shimabukuro, M., Koyama, K., Lee, Y., and Unger, R.H. (1997) Leptin or Troglitazone-Induced Lipopenia Protects Islets from Interleukin 1β Cytotoxicity, J. Clin. Invest. 100, 1750–1754.

    Article  PubMed  CAS  Google Scholar 

  13. Shimabukuro, M., Koyama, K., Chen, G., Wang, M.-Y., Trieu, F., Lee, Y., Newgard, C.B., and Unger, R.H. (1997) Direct Antidiabetic Effect of Leptin Through Triglyceride Depletion of Tissues, Proc. Natl. Acad. Sci. USA 94, 4637–4641.

    Article  PubMed  CAS  Google Scholar 

  14. Zhou, Y.-T., Shimabukuro, M., Koyama, K., Lee, Y., Wang, M.-Y., Trieu, F., Newgard, C.B., and Unger, R.H. (1997) Induction by Leptin of Uncoupling Protein-2 and Enzymes of Fatty Acid Oxidation, Proc. Natl. Acad. Sci. USA 94, 6386–6390.

    Article  PubMed  CAS  Google Scholar 

  15. Pick, A., Clark, J., Kubstrup, C., Levisetti, M., Pugh, W., Bonner-Weir, S., and Polonsky, K. (1998) Role of Apoptosis in Failure of Beta-Cell Mass Compensation for Insulin Resistance and Beta-Cell Defects in the Male Zucker Diabetic Fatty Rat, Diabetes 47, 1565–1573.

    Google Scholar 

  16. Jolly, Y.C., Major, C., and Wolf, B.A. (1993) Transient Activation of Calcium-Dependent Phospholipase A2 by Insulin Secretagogues in Isolated Pancreatic Islets, Biochemistry 32, 337–346.

    Article  Google Scholar 

  17. Konrad, R.J., Major, C.D., and Wolf, B.A. (1994) Diacylglycerol Hydrolysis to Arachidonic Acid Is Necessary for Insulin Secretion from Isolated Pancreatic Islets. Sequential Actions of Diacylglycerol and Monoacylglycerol Lipases, Biochemistry 33, 13284–13294.

    Article  PubMed  CAS  Google Scholar 

  18. Metz, S.A., Draznin, B., Sussman, K.E., and Leitner, J.W. (1987) Unmasking of Arachidonate Induced Insulin Release by Removal of Extracellular Calcium. Arachidonic Acid Mobilizes Cellular Calcium in Islets of Langerhans, Biochem. Biophys. Res. Commun. 142, 251–258.

    Article  PubMed  CAS  Google Scholar 

  19. Wolf, B., Turk, J., Sherman, W., and McDaniel, M. (1986) Intracellular Ca2+ Mobilization by Arachidonic Acid. Comparison with Myo-inositol 1,4,5-Triphosphate in Isolated Pancreatic Islets, J. Biol. Chem. 261, 3501–3510.

    PubMed  CAS  Google Scholar 

  20. Wolf, B.A., Pasquale, S.M., and Turk, J. (1991) Free Fatty Acid Accumulation in Secretagogue Stimulated Pancreatic Islets and Effects of Arachidonate on Depolarization-Induced Insulin Secretion, Biochemistry 30, 6372–6379.

    Article  PubMed  CAS  Google Scholar 

  21. Ramanadham, S., Gross, R.W., and Turk, J. (1992) Arachidonic Acid Induces an Increase in Cytosolic Calcium Concentration in Single Pancreatic Islet Beta Cells, Biochem. Biophys. Res. Commun. 184, 647–653.

    Article  PubMed  CAS  Google Scholar 

  22. Ramanadham, S., Gross, R.W., Han, X., and Turk, J. (1993) Inhibition of Arachidonate Release by Secretagogue-Stimulated Pancreatic Islets Suppresses Both Insulin Secretion and the Rise in Beta-Cell Cytosolic Calcium Concentration, Biochemistry 32, 337–346.

    Article  PubMed  CAS  Google Scholar 

  23. Ramanadham, S., Hsu, F.-F., Bohrer, A., Ma, Z., and Turk, J. vidual Isoforms, Biochemistry 34, 12193–12203.

  24. Han, X., Ramanadham, S., Turk, J., and Gross, R.W. (1998) Reconstitution of Membrane Fusion Between Pancreatic Islet Secretory Granules and Plasma Membranes. Catalysis by a Protein Constituent Recognized by a Monoclonal Antibody Directed Against Glyceraldehyde-3-phosphate Dehydrogenase, Biochim. Biophys. Acta 1414, 95–107.

    Article  PubMed  CAS  Google Scholar 

  25. Surette, M.E., Winkler, J.D., Fonteh, A.N., and Chilton, F.H. (1996) Relationship Between Arachidonate-Phospholipid Remodeling and Apoptosis, Biochemistry 35, 9187–9196.

    Article  PubMed  CAS  Google Scholar 

  26. Nowatzke, W., Ramanadham, S., Hsu, F.-F., Ma, Z., Bohrer, A., and Turk, J. (1998) Mass Spectrometric Evidence That Agents Which Cause Loss of Ca2+ from Intracellular Compartments Induce Hydrolysis of Arachidonic Acid from Pancreatic Islet Membrane Phospholipids by a Mechanism That Does Not Require a Rise in Cytosolic Ca2+ Concentration, Endocrinology 139, 4073–4085.

    Article  PubMed  CAS  Google Scholar 

  27. Zhou, Y., Teng, D., Drayluk, F., Ostrega, D., Roe, M.W., Philipson, L., and Polonsky, K.S. (1998) Apoptosis in Insulin-Secreting Cells. Evidence for the Role of Intracellular Ca2+ Stores and Arachidonic Acid Metabolism, J. Clin. Invest. 101, 1623–1632.

    PubMed  CAS  Google Scholar 

  28. Ramanadham, S., Wolf, M., Li, B., Bohrer, A., and Turk, J. (1997) Glucose-Responsivity and Expression of an ATP-Stimulatable, Ca2+-Independent Phospholipase A2 Enzyme in Clonal Insulinoma Cell Lines, Biochim. Biophys. Acta 1344, 153–164.

    PubMed  CAS  Google Scholar 

  29. Ramanadham, S., Hsu, F.-F., Zhang, S., Bohrer, A., Ma, Z., and Turk, J. (2000) Electrospray Ionization Mass Spectrometric Analysis of INS-1 Insulinoma Cell Phospholipids. Comparison to Pancreatic Islets and Effects of Fatty Acid Supplementation on Phospholipid Composition and Insulin Secretion, Biochim. Biophys. Acta 1484, 251–256.

    PubMed  CAS  Google Scholar 

  30. Holman, R.T., Johnson, S.B., Gerrard, J.M., Mauer, S.M., Kupcho-Snadber, S., and Brown, D.M. (1983) Arachidonic Acid Deficiency in Streptozotocin Induced Diabetes, Proc. Natl Acad. Sci. USA 80, 2375–2379.

    Article  PubMed  CAS  Google Scholar 

  31. Han, X., and Gross, R.W. (1994) Electrospray Ionization Mass Spectrometric Analysis of Human Erythrocyte Membrane Phospholipids, Proc. Natl. Acad. Sci. USA 91, 10635–10639.

    Article  PubMed  CAS  Google Scholar 

  32. Han, X., and Gross, R.W. (1995) Structural Determination of Picomole Amounts of Phospholipids via Electrospray Ionization Tandem Mass Spectrometry, J. Am. Soc. Mass Spectrom. 6, 1202–1210.

    Article  CAS  Google Scholar 

  33. Hsu, F.-F., Bohrer, A., and Turk, J. (1998) Formation of Lithiated Adducts of Glycerophosphocholine Lipids Facilitates Their Identification by Electrospray Ionization Tandem Mass Spectrometry, J. Am. Soc. Mass Spectrom. 9, 516–526.

    Article  PubMed  CAS  Google Scholar 

  34. McDaniel, M.L., Colca, J.R., Kotagal, N., and Lacy, P.E. (1983) A Subcellular Fractionation Approach for Studying Insulin Release Mechanisms and Calcium Metabolism in Islets of Langerhans, Methods Enzymol. 98, 182–200.

    PubMed  CAS  Google Scholar 

  35. Bligh, E.G., and Dyer, W.J. (1959) A Rapid Method of Total Lipid Extraction and Purification, Can. J. Biochem. Physiol. 37, 911–917.

    PubMed  CAS  Google Scholar 

  36. Murphy, R.C., and Harrison, K.A. (1994) Fast Atom Bombardment Mass Spectrometry of Phospholipids, Mass Spectrom. Rev. 13, 57–76.

    Article  CAS  Google Scholar 

  37. Huang, Y.S., Horrobin, D.F., Manaku, M.S., Mitchell, J., and Ryan, M.A. (1984) Tissue Phospholipid Fatty Acid Composition in the Diabetic Rat, Lipids 19, 367–370.

    PubMed  CAS  Google Scholar 

  38. Gudbjarnason, S., El-Hage, A.N., Whitehurst, V.E., Simental, F., and Balzas, T. (1987) Reduced Arachidonic Acid Levels in Major Phospholipids of Heart Muscle in the Diabetic Rat, J. Mol. Cell. Cardiol. 19, 1141–1146.

    Article  PubMed  CAS  Google Scholar 

  39. Takahashi, R., Morse, N., and Horrobin, D.F. (1988) Plasma, Platelet, and Aorta Fatty Acids Composition in Response to Dietary n−6 and n−3 Fats Supplementation in a Rat Model of Non-Insulin Dependent Diabetes, J. Nutr. Sci. Vitaminol. 34, 413–421.

    PubMed  CAS  Google Scholar 

  40. Dang, A.Q., Faas, F.H., Lee, J.A., and Carter, W.J. (1988) Altered Fatty Acid Composition in the Plasma, Platelets, and Aorta of the Streptozotocin Induced Diabetics Rats, Metabolism 37, 1065–1072.

    Article  PubMed  CAS  Google Scholar 

  41. Hu, Q., Ishii, E., and Nakagawa, Y. (1994) Differential Changes in Relative Levels of Arachidonic Acid in Major Phospholipids from Rat Tissues During Progression of Diabetes, J. Biochem. 115, 405–408.

    PubMed  CAS  Google Scholar 

  42. Kuwahara, Y., Yanagishita, T., Konno, N., and Katagiri, T. (1997) Changes in Microsomal Membrane Phospholipids and Fatty Acids and in Activities of Membrane-Bound Enzyme in Diabetic Rat Heart, Basic Res. Cardiol. 92, 214–222.

    Article  PubMed  CAS  Google Scholar 

  43. Sprecher, H., Lutria, D.L., Mohammed, B.S., and Baykousheva, S.P. (1995) Reevaluation of the Pathways for the Biosynthesis of Polyunsaturated Fatty Acids, J. Lipid Res. 36, 2471–2477.

    PubMed  CAS  Google Scholar 

  44. Poisson, J.-P.G., and Cunnane, S.C. (1991) Long Chain Fatty Acid Metabolism in Fasting and Diabetes. Relation Between Altered Desaturase Activity and Fatty Acid Composition, J. Nutr. Biochem. 2, 60–70.

    Article  CAS  Google Scholar 

  45. Blond, J.-P., Henchiri, C., and Bezard, J. (1989) Delta-6 and Delta-5 Desaturase Activities in Liver from Obese Zucker Rats at Different Ages, Lipids 24, 389–395.

    PubMed  CAS  Google Scholar 

  46. Kalofoutis, A., and Lekakis, J. (1981) Changes in Platelet Phospholipids in Diabetes Mellitus, Diabetologia 21, 540–543.

    PubMed  CAS  Google Scholar 

  47. Morita, I., Takahashi, R., Ito, H., Orimo, H., and Murota, S. (1983) Increased Arachidonic Acid Content in Platelet Phospholipids from Diabetic Patients, Prostaglandins Leukotrienes Med. 11, 33–41.

    Article  CAS  Google Scholar 

  48. Takahashi, R., Morita, I., Saito, Y., Ito, H., and Murota, S. (1984) Increased Arachidonic Acid Incorporation into Platelet Phospholipids in Type 2 (non-insulin-dependent) Diabetes, Diabetologia 26, 134–137.

    Article  PubMed  CAS  Google Scholar 

  49. Prisco, D., Rogasi, P.G., Paniccia, R., Abbate, R., Gensini, G.F., Pinto, S., Vanni, D., and Neri Serneri, G.G. (1989) Altered Membrane Fatty Acid Composition and Increased Thromboxane A2 Generation in Platelets from Patients with Diabetes Mellitus, Prostaglandins Leukotrienes Essent. Fatty Acids 35, 15–23.

    Article  CAS  Google Scholar 

  50. Rabini, R.A., Fumelli, P., Galassi, R., Dousset, N., Taus, M., Ferretti, G., Mazzanti, L., Curatola, G., Solera, M.L., and Valdiguie, P. (1994) Increased Susceptibility to Lipid Oxidation of Low-Density Lipoproteins and Erythrocyte Membranes from Diabetic Patients, Metabolism 43, 1470–1474.

    Article  PubMed  CAS  Google Scholar 

  51. Wijendran, V., Bendel, R.B., Couch, S.C., Philipson, E.H., Thomsen, K., Zhang, X., and Lammi-Keefe, C.J. (1999) Maternal Plasma Phospholipid Polyunsaturated Fatty Acids in Pregnancy With and Without Gestational Diabetes Mellitus. Relations with Maternal Factors, Am. J. Clin. Nutr. 70, 53–61.

    PubMed  CAS  Google Scholar 

  52. Field, C.J., Ryan, E.A., Thomson, A.B.R., and Clandinin, M.T. (1988) Dietary Fat and the Diabetic State Alter Insulin Binding and the Fatty Acyl Composition of the Adipocyte Plasma Membrane, Biochem. J. 253, 417–424.

    PubMed  CAS  Google Scholar 

  53. Field, C.J., Ryan, E.A., Thomson, A.B.R., and Clandinin, M.T. (1990) Diet Fat Composition Alters Membrane Phospholipid Composition, Insulin Binding, and Glucose Metabolism in Adipocytes from Control and Diabetic Animals, J. Biol. Chem. 265, 11143–11150.

    PubMed  CAS  Google Scholar 

  54. Borkman, M., Storlien, L.H., Pan, D.A., Jenkins, A.B., Chisholm, D.J., and Campbell, L.V. (1993) The Relation Between Insulin Sensitivity and the Fatty Acid Composition of Skeletal Muscle Phospholipids, N. Engl. J. Med. 328, 238–244.

    Article  PubMed  CAS  Google Scholar 

  55. Pan, D.A., Lillioja, S., Milner, M.R., Kriketos, A.D., Baur, L.A., Bogaardus, C., and Storlien, L.H. (1995) Skeletal Muscle Membrane Lipid Composition Is Related to Adiposity and Insulin Action, J. Clin. Invest. 96, 2802–2808.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Turk.

About this article

Cite this article

Hsu, FF., Bohrer, A., Wohltmann, M. et al. Electrospray ionization mass spectrometric analyses of changes in tissue phospholipid molecular species during the evolution of hyperlipidemia and hyperglycemia in Zucker diabetic fatty rats. Lipids 35, 839–852 (2000). https://doi.org/10.1007/S11745-000-0593-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/S11745-000-0593-z

Keywords

Navigation