Skip to main content
Log in

Study on Kinetic Mechanism of Bastnaesite Concentrates Decomposition Using Calcium Hydroxide

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The thermal decomposition of bastnaesite concentrates using calcium hydroxide was studied. Calcium hydroxide can effectively inhibit the emission of fluorine during roasting by transforming it to calcium fluoride. The decomposition rate increased with increasing reaction temperature and amount of calcium hydroxide. The decomposition kinetics were investigated. The decomposition reaction was determined to be a heterogeneous gas–solid reaction, and it followed an unreacted shrinking core model. By means of the integrated rate equation method, the reaction was proven to be kinetically first order. Different reaction models were fit to the experimental data to determine the reaction control process. The chemical reaction at the phase interface controlled the reaction rate in the temperatures ranging from 673 K to 773 K (400 °C to 500 °C) with an apparent activation energy of 82.044 kJ·mol−1. From 773 K to 973 K (500 °C to 700 °C), diffusion through the solid product’s layer became the determining step, with a lower activation energy of 15.841 kJ·mol−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. J. Ren, S. X. Song, A. L. Valdivieso and S. Lu: Int. J. Miner. Process., 2000, vol. 59, pp. 237-45.

    Article  Google Scholar 

  2. A. Jordens, Y. P. Cheng and K. E. Waters: Miner. Eng., 2013, vol. 41, pp. 97–114.

    Article  Google Scholar 

  3. F. Zhou, L. X. Wang, Z. H. Xu, Q. X. Liu, M. J. Deng and R. Chi: Miner. Eng., 2014, vol. 64, pp. 139-45.

    Article  Google Scholar 

  4. A. Jordens, C. Marion, O. Kuzmina and K. E. Waters: Miner. Eng., 2014, vol. 66-68, pp. 119-29.

    Article  Google Scholar 

  5. G. Ozbayoglu and M. U. Atalay: J. Alloys Compd., 2000, vol. 303-04, pp. 520-23.

    Article  Google Scholar 

  6. C. K. Gupta and N. Krishnamurthy: Extractive Metallurgy of Rare Earths, CRC press, New York, 2005.

    Google Scholar 

  7. L. S. Wang, X. W. Huang, Y. Yu, L. S. Zhao, C. M. Wang, Z. Y. Feng, D. L. Cui and Z. Q. Long: J. Clean Prod., 2017, vol. 165, pp. 231-42.

    Article  Google Scholar 

  8. G. X. Xu: Rare Earths, Metallurgical Industry Press, Beijing, 1995.

    Google Scholar 

  9. W. Y. Wu and X. Bian: Rare Earth Metallurgy Technology, Science Press, Beijing, 2012.

    Google Scholar 

  10. F. Sadri, A. M. Nazari and A. Ghahreman: J. Rare Earths, 2017, vol. 35, pp. 739-52.

    Article  Google Scholar 

  11. M. K. Jha, A. Kumari, R. Panda, J. R. Kumar, K. Yoo, J. Y. Lee: Hydrometallurgy, 2016, vol. 165, pp. 2-26.

    Article  Google Scholar 

  12. R. A. Chi and D. Z. Wang: Rare Earth Mineral Processing, Science Press, Beijing, 2014.

    Google Scholar 

  13. M. Kul, Y. Topkaya and I. Karakata: Hydrometallurgy, 2008, vol. 93, pp. 129-35.

    Article  Google Scholar 

  14. A. Yörükoglu, A. Obut and I. Girgin: Hydrometallurgy, 2003, vol. 68, pp. 195-202.

    Article  Google Scholar 

  15. B. Wu, H. Shang and J. K. Wen: Rare Met., 2015, vol. 34, pp. 202-06.

    Article  Google Scholar 

  16. Y. H. Xu, H. J. Liu, Z. J. Meng, J. G. Cui, W. Y. Zhao and L. C. Li: J. Rare Earths, 2012, vol. 30, pp. 155-58.

    Article  Google Scholar 

  17. W. Brugger and H. Greinacher: J. Metals, 1967, vol. 19, pp. 32-35.

    Google Scholar 

  18. M.M. Woyski, J.L. Bradford, and H.H. Elliott: US patent no. 3353928, 1967.

  19. R.M. Mandle and W.T. Straehel: US patent, no. 3298807, 1967.

  20. Ministry of Environmental Protection of the People’s Republic of China: Emission Standards of Pollutants for Rare Earths Industry (GB 26451-2011), China Environmental Science Press, Beijing, 2011.

  21. U.S. Environmental Protection Agency: Rare Earth Elements: A Review of Production, Processing, Recycling, and Associated Environmental Issues, National Service Center for Environmental Publications, Cincinnati, 2012.

  22. G. C. Zhu, W. Z. Shi and R. A. Chi: J. Chin. Rare Earth Soc., 2002, vol. 20, pp. 136-42 (in Chinese).

    Google Scholar 

  23. R. Chi, X. Zhang, G. Zhu, Z. A. Zhou, Y. Wu, C. Wang and F. Yu: Min. Eng., 2004, vol. 17, pp. 1037-43.

    Article  Google Scholar 

  24. Z. G. Liu, Q. S. Liu and L. S. Liu: Chin. Rare Earths, 2004, vol. 25, pp. 20-25 (in Chinese).

    Google Scholar 

  25. R. Chi, Z. Li, C. Peng, H. Gao and Z. Xu: Metall. Mater. Trans. B, 2006, vol. 37B, pp. 155-60.

    Article  Google Scholar 

  26. W. Y. Wu, X. Bian, Z. Y. Wu, S. C. Sun and G. F. Tu: T. Nonferr. Metal Soc., 2007, vol. 17, pp. 864-68.

    Article  Google Scholar 

  27. L. S. Wang, C. M. Wang, Y. Yu, X. W. Huang, Z. Q. Long, Y. K. Hou and D. L. Cui: J. Hazard Mater., 2012, vol. 209-210, pp. 77-83.

    Article  Google Scholar 

  28. L. S. Wang, Y. Yu, X. W. Huang, Z. Q. Long and D. L. Cui: Chem. Eng. J., 2013, vol. 215-216, pp. 162-67.

    Article  Google Scholar 

  29. X. W. Huang, Z. Q. Long, L. S. Wang and Z. Y. Feng: Rare Met., 2015, vol. 34, pp. 215-22.

    Article  Google Scholar 

  30. Y. K. Huang, T. A. Zhang, Z. H. Dou, J. Liu and J. H. Tian: Hydrometallurgy, 2016, vol. 162, pp. 104-10.

    Article  Google Scholar 

  31. D. L. Zhang, M. Li, K. Gao, J. F. Li, Y. J. Yan and X. Y. Liu: Ultrason. Sonochem., 2017, vol. 39, pp. 774-81.

    Article  Google Scholar 

  32. L. O. Diehl, T. L. Gatiboni, P. A. Mello, E. I. Muller, F. A. Duarte and E. M. M. Flores: Ultrason. Sonochem., 2018, vol. 40, pp. 24-29.

    Article  Google Scholar 

  33. P. Cen, W. Y. Wu and X. Bian: Green Process. Synth., 2016, vol. 5, pp. 427-34.

    Google Scholar 

  34. P. Cen, W. Y. Wu and X. Bian: Metall. Mater. Trans. B, 2017, vol. 48B, pp. 1539-46.

    Article  Google Scholar 

  35. S. R. Logan: Fundamentals of Chemical Kinetics, Longman Group Limited, London, 1996.

    Google Scholar 

  36. G. S. Upadhyaya and R. K. Dube: Problems in Metallurgical Thermodynamics and Kinetics, Pergamon Press, New York, 1977.

    Google Scholar 

  37. G. F. Tu, S. R. Zhang and C. Z. Ren: J. Chin. Rare Earths Soc., 2000, vol. 18, pp. 24-26 (in Chinese).

    Google Scholar 

  38. Z. G. Liu and S. Chang: Chin. Rare Earths, 1997, vol. 18, pp. 15-18 (in Chinese).

    Google Scholar 

  39. Z. G. Liu and J. R. Zhang: Chin. Rare Met., 1997, vol. 21, pp. 261-63 (in Chinese).

    Google Scholar 

  40. G. Zhu, R. Chi, W. Shi and Z. Xu: Min. Eng., 2003, vol. 16, pp. 671-74.

    Article  Google Scholar 

  41. L. Q. Zhang, Z. C. Wang, L. L. Jiang, X. H. Wang and F. C. Zhang: Chin. J. Process Eng., 2007, vol. 7, pp. 298-301.

    Google Scholar 

  42. X. Bian, J. L. Chen, Z. H. Zhao, S. H. Yin, Y. Luo, F. Y. Zhang and W. Y. Wu: J. Rare Earth, 2010, vol. 28, pp. 86-90.

    Article  Google Scholar 

  43. S. S. Chen, Z. Y. Wu, B. Gao, X. Bian, W. Y. Wu and G. F. Tu: J. Rare Earth, 2007, vol. 25, pp. 508-11.

    Article  Google Scholar 

  44. D. Wang, Z. Wang, T. Qi, L. N. Wang and T. Y. Xue: Metall. Mater. Trans. B, 2016, vol. 47, pp. 666-74.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenyuan Wu.

Additional information

Manuscript submitted October 17, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cen, P., Wu, W. & Bian, X. Study on Kinetic Mechanism of Bastnaesite Concentrates Decomposition Using Calcium Hydroxide. Metall Mater Trans B 49, 1197–1204 (2018). https://doi.org/10.1007/s11663-018-1239-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-018-1239-2

Keywords

Navigation