Skip to main content
Log in

Effects of metals on activity and community of sulfate-reducing bacterial enrichments and the discovery of a new heavy metal-resistant SRB from Santos Port sediment (São Paulo, Brazil)

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Sulfate-reducing bacteria (SRB) can be used to remove metals from wastewater, sewage, and contaminated areas. However, metals can be toxic to this group of bacteria. Sediments from port areas present abundance of SRB and also metal contamination. Their microbial community has been exposed to metals and can be a good inoculum for isolation of metal-resistant SRB. The objective of the study was to analyze how metals influence activity and composition of sulfate-reducing bacteria. Enrichment cultures were prepared with a different metal (Zn, Cr, Cu, and Cd) range concentration tracking activity of SRB and 16S rRNA sequencing in order to access the community. The SRB activity decreased when there was an increase in the concentration of the metals tested. The highest concentration of metals precipitated were 0.2 mM of Cd, 5.4 mM of Zn, 4.5 mM of Cu, and 9.6 mM of Cr. The more toxic metals were Cd and Cu and had a greater community similarity with less SRB and more fermenters (e.g., Citrobacter and Clostridium). Meanwhile, the enrichments with less toxic metals (Cr and Zn) had more sequences affiliated to SRB genera (mainly Desulfovibrio). A new Desulfovibrio species was isolated. This type of study can be useful to understand the effects of metals in SRB communities and help to optimize wastewater treatment processes contaminated by metals. The new Desulfovibrio species may be important in future studies on bioremediation of neutral pH effluents contaminated by metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and materials

The metagenome data were submitted to the National Center for Biotechnology Information (NCBI) Sequence Read Archive (SRA) (https://submit.ncbi.nlm.nih.gov/subs/sra/) through BioProject number PRJNA531183. The rest of the datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Abessa DMS, Carr RS, Souza ECPM, Rachid BR, Zaroni LR, Gasparro M, Pinto YA, Bicero HMA, Sarkis JE, Muniz P (2008) Integrative ecotoxicological assessment of contaminated sediments in a complex tropical estuarine system. In: Hoffer TN (ed) Marine pollution: new research. Nova Science Publishers Inc, New York, pp 125–159

    Google Scholar 

  • Adorno MAT, Hirasawa JS, Varesche MBA (2014) Development and validation of two methods to quantify volatile acids (C2-C6) by GC-FID: headspace (automatic and manual) and liquid-liquid extraction (LLE). Am J Anal Chem 5:406–414

    Article  Google Scholar 

  • Ahmadi R, Rezaee A, Anvari M, Hossini H, Rastegar SO (2015) Optimization of Cr(VI) removal by sulfate-reducing bacteria using response surface methodology. Desalin Water Treat 57:11096–11102. https://doi.org/10.1080/19443994.2015.1041055

    Article  CAS  Google Scholar 

  • Ali H, Khan E, Ilahi I (2019) Environmental chemistry and ecotoxicology of hazardous metals: environmental persistence, toxicity, and bioaccumulation. Journal of Chemistry 1:1–14. https://doi.org/10.1155/2019/6730305

    Article  CAS  Google Scholar 

  • APHA (2012) Standard methods for the examination of water and waste water, 22nd edn. American Public Health Association, American Water Works Association, Water Environment Federation

    Google Scholar 

  • Argudín MA, Hoefer A, Butaye P (2019) Metal resistance in bacteria from animals. Res Vet Sci 122:132–147

    Article  Google Scholar 

  • Ayangbenro AS, Olanrewaju OS, Babalola OO (2018) Sulfate-reducing bacteria as an effective tool for sustainable acid mine bioremediation. Front Microbiol 9:1986. https://doi.org/10.3389/fmicb.2018.01986

    Article  Google Scholar 

  • Azabou S, Mechichi T, Sayadi S (2007) Zinc precipitation by heavy-metal tolerant sulfate-reducing bacteria enriched on phosphogypsum as a sulfate source. Min Eng 20:173–178. https://doi.org/10.1016/j.mineng.2006.08.008

    Article  CAS  Google Scholar 

  • Bhattacharya SK, Uberoi V, Madura RL, Haghighi-Podeh MR (1995) Effect of cobalt on methanogenesis. Environ Technol 16:271–278. https://doi.org/10.1080/09593331608616269

    Article  CAS  Google Scholar 

  • Binish MB, Sruthy S, Mohan M (2015) Effect of metals (Pb, Cd, Cu) on the growth of sulphate reduction associated Bacterium Clostridium bifermentans isolated from Cochin estuary, Southwest coast of India. International Journal of Marine Science 5(50):1–5. https://doi.org/10.5376/ijms.2015.05.0050

    Article  Google Scholar 

  • Brooks B, Mueller RS, Young JC, Morowitz MJ, Hettich RL, Banfield JF (2015) Strain-resolved microbial community proteomics reveals simultaneous aerobic and anaerobic function during gastrointestinal tract colonization of a preterm infant. Front Microbiol 6:654. https://doi.org/10.3389/fmicb.2015.00654

    Article  Google Scholar 

  • Buruaem LM, Hortellani MA, Sarkis JE, Costa-Lotufo LV, Abessa DMS (2012) Contamination of port zone sediments by metals from Large Marine Ecosystems of Brazil. Mar Pollut Bull 64:479–488

    Article  CAS  Google Scholar 

  • Cabrera G, Perez R, Gomez JM, Abalos A, Cantero D (2006) Toxic effects of dissolved metals on Desulfovibrio vulgaris and Desulfovibrio sp. strains. J Hazard Mater 135:40–46

    Article  CAS  Google Scholar 

  • Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, Fierer N, Knight R (2011) Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci U S A 108:4516–4522. https://doi.org/10.1073/pnas.1000080107

    Article  Google Scholar 

  • CCME (2002) Canadian environmental quality guidelines, National Guidelines and Standards Office. Canadian Council of Ministers of the Environment, Winnipeg, 12 p

    Google Scholar 

  • CETESB (2018) Companhia De Tecnologia De Saneamento Ambiental. Qualidade das águas costeiras no estado de São Paulo. Disponible at: https://cetesb.sp.gov.br/aguas-costeiras/wp-content/uploads/sites/2/2018/06/Relat%C3%B3rio-de-Qualidade-das-%C3%81guas-Costeiras-do-Estado-de-S%C3%A3o-Paulo-2017.pdf; Acessed in: 13 de janeiro de 2020.

  • Chen J, Li J, Zhang H, Shi W, Liu Y (2019) Bacterial heavy-metal and antibiotic resistance genes in a copper tailing dam area in Northern China. Front Microbiol 10:1916

    Article  Google Scholar 

  • Choueri RB, Cesar A, Abessa DMS, Torres RJ, Morais RD, Riba I, Pereira CDS, Nascimento M, Mozeto AA, DelValls AT (2009) Development of site specific sediment quality guidelines for North and South Atlantic littoral zones: comparison against national and international sediment quality benchmarks. J Hazard Mater 170:320–331

    Article  CAS  Google Scholar 

  • Fu F, Wang Q (2011) Removal of metal ions from wastewaters: a review. J Environ Manag 92:407–418. https://doi.org/10.1016/j.jenvman.2010.11.011

    Article  CAS  Google Scholar 

  • Gänzle MG (2015) Lactic metabolism revisited: metabolism of lactic acid bacteria in food fermentations and food spoilage. Curr. Opin. Food Sci 2:106–117. https://doi.org/10.1016/j.cofs.2015.03.00

    Article  Google Scholar 

  • Gardner LR, Stewart PS (2002) Action of glutaraldehyde and nitrite against sulfate-reducing bacterial biofilms. J Ind Microbiol Biotechnol 29:354–360

    Article  CAS  Google Scholar 

  • Gaudette HE, Flight WR, Toner L, Folger DW (1974) An inexpensive tritation method for the determination of organic carbon in recent sediments. J Sediment Petrol 44:249–253

    CAS  Google Scholar 

  • Gerritse J, Gottschal JC (1993) Two-membered mixed cultures of methanogenic and aerobic bacteria in O2-limited chemostats. J Gen Microbiol 139:1853–1860

    Article  CAS  Google Scholar 

  • Gillan DC, Roosa S, Kunath B, Billon G, Wattlez R (2015) The long-term adaptation of bacterial communities in metal-contaminated sediments: a metaproteogenomic study. Environ Microbiol 17:1991–2005

    Article  CAS  Google Scholar 

  • Gonzalez-Garcia RA, McCubbin T, Navone L, Stowers C, Nielsen LK, Marcellin E (2017) Microbial propionic acid production. Fermentation, 3:3 – 21. 3. https://doi.org/10.3390/fermentation3020021

  • Guo H, Nasir M, Lv J, Dai Y, Gao J (2017a) Understanding the variation of microbial community in metals contaminated soil using high throughput sequencing. Ecotoxicol Environ Saf 144:300–336. https://doi.org/10.1016/j.ecoenv.2017.06.048

    Article  CAS  Google Scholar 

  • Guo J, Kang Y, Feng Y (2017b) Bioassessment of metal toxicity and enhancement of metal removal by sulfate-reducing bacteria in the presence of zero valent iron. J Environ Manag 203:278–285. https://doi.org/10.1016/j.jenvman.2017.07.075

    Article  CAS  Google Scholar 

  • Hao OJ, Huang L, Chen JM, Buglass RL (1994) Effects of metal additions on sulfate reduction activity in wastewaters. Toxicol Environ Chem 46:197–212. https://doi.org/10.1080/02772249409358113

    Article  CAS  Google Scholar 

  • Hortellani MA, Sarkis JES, Abessa DMS, Sousa ECPM (2008) Avaliação da contaminação por elementos metálicos dos sedimentos do estuário Santos – São Vicente. Quim Nova 31:10–19

    Article  CAS  Google Scholar 

  • Hu K, Xu D, Chen Y (2020) An assessment of sulfate reducing bacteria on treating sulfate-rich metal-laden wastewater from electroplating plant. J Hazard Mater 122376:122376. https://doi.org/10.1016/j.jhazmat.2020.122376

    Article  CAS  Google Scholar 

  • Hussain A, Qazi JI (2016) Metal-induced functional stress in sulphate-reducing thermophiles. Biotech. 6:1–17. https://doi.org/10.1007/s13205-015-0342-1

    Article  Google Scholar 

  • Igiri BE, Okoduwa SIR, Idoko GO, Akabuogu EP, Adeyi AO, Ejiogu IB (2018) Toxicity and bioremediation of metals contaminated ecosystem from Tannery Wastewater: a review. J Toxicol 2018:1–16. https://doi.org/10.1155/2018/2568038

    Article  CAS  Google Scholar 

  • Imchen M, Kumavath R, Barh D, Vaz A, Góes-Neto A, Tiwari S, Ghosh P, Wattam AR, Azevedo V (2018) Comparative mangrove metagenome reveals global prevalence of metals and antibiotic resistome across different ecosystems. Sci Rep 8:1–15

    Google Scholar 

  • Jiménez EI, Garcia VP (1992) Relationships between organic carbon and total organic matter in municipal solid wastes and city refuse composts. Bioresour Technol 41:265–272

    Article  Google Scholar 

  • Jørgensen BB (1982) Mineralization of organic matter in the sea bed-the role of sulphate reduction. Nature 296:643–645. https://doi.org/10.1038/296643a0

    Article  Google Scholar 

  • Kim H, Choi J, Joo JO, Kim Y, Choi J, Oh B (2015) Research Article Review jmb Development of a microbe-zeolite carrier for the effective elimination of metals from seawater. J Microbiol Biotechnol 25:1542–1546. https://doi.org/10.4014/jmb.1504.04067

    Article  CAS  Google Scholar 

  • Kousi P, Remoundaki E, Hatzikioseyian A, Tsezos M (2015) Sulphate-reducing bioreactors: current practices and perspectives, in Proceedings of the IWA Balkan Young Water Professionals 2015 (Thessaloniki: International Water Association), 409–417.

  • Lin CY (1992) Effect of metals on volatile fatty acid degradation in anaerobic digestion. Water Res 26:177–183

    Article  CAS  Google Scholar 

  • Lin CY (1993) Effect of metals on acidogenesis in anaerobic digestion. Water Res 27:147–152

    Article  CAS  Google Scholar 

  • Luptakova A, Kusnierova M (2005) Bioremediation of acid mine drainage contaminated by SRB. Hydrometallurgy 77:97–102

    Article  CAS  Google Scholar 

  • Martins M, Faleiro ML, Veríssimo AR, Barreiros MA, Costa MC (2009) Characterization and activity studies of highly metal resistant sulphate-reducing bacteria to be used in acid mine drainage decontamination. J Hazard Mater 166:706–713

    Article  CAS  Google Scholar 

  • Masindi V, Muedi KL (2018) Environmental contamination by metals. Metals. https://doi.org/10.5772/intechopen.76082

  • Muyzer G, Stams AJ (2008) The ecology and biotechnology of sulphate-reducing bacteria. Nat Rev Microbiol 6:441–454. https://doi.org/10.1038/nrmicro1892

    Article  CAS  Google Scholar 

  • Navarro EMG, Tagle MEV, Marín MTL, Alfonso MSP (2011) Comparison of USEPA 3050B and ISO 14869-1:2001 digestion methods for sediment analysis by using FAAS and ICP-OES quantification techniques. Quím Nova 34:1443–1449. https://doi.org/10.1590/S0100-40422011000800025

    Article  CAS  Google Scholar 

  • Nies DH (1999) Microbial heavy-metal resistance. Appl Microbiol Biotechnol 51:730–750

    Article  CAS  Google Scholar 

  • Paulo LM, Stams AJM, Sousa DZ (2015) Methanogens, sulphate and metals: a complex system. Rev Environ Sci Biotechnol 14:537–553. https://doi.org/10.1007/s11157-015-9387-1

    Article  CAS  Google Scholar 

  • Pinto AB, Pagnocca FC, Pinheiro MAA, Fontes RFC, Oliveira AJFC (2015) Metals and TPH effects on microbial abundance and diversity in two estuarine areas of the southern-central coast of São Paulo State, Brazil. Mar Pollut Bull 96:410–417. https://doi.org/10.1016/j.marpolbul.2015.04.014

    Article  CAS  Google Scholar 

  • Pruesse E, Peplies J, Glöckner FO (2012) SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28:1823–1829. https://doi.org/10.1093/bioinformatics/bts252

    Article  CAS  Google Scholar 

  • Sahinkaya E, Yurtsever A, Toker Y, Elcik H, Cakmaci M, Kaksonenc AH (2015) Biotreatment of As-containing simulated acid mine drainage using laboratory scale sulfate reducing upflow anaerobic sludge blanket reactor. Miner Eng 75:133–139

    Article  CAS  Google Scholar 

  • Sancey B, Trunfio G, Charles J, Minary JF, Gavoille S, Badot PM, Crini G (2011) Metal removal from industrial effluents by sorption on cross-linked starch: chemical study and impact on water toxicity. J Environ Manag 92:765–772. https://doi.org/10.1016/j.jenvman.2010.10.033

    Article  CAS  Google Scholar 

  • Sani RK, Peyton BM, Jadhyala M (2003) Toxicity of lead in aqueous medium to Desulfovibrio desulfuricans G20. Environ Toxicol Chem 22:252–260. https://doi.org/10.1897/1551-5028(2003)

    Article  CAS  Google Scholar 

  • Sar P, Kazy SK, Paul D, Sarkar A (2013) Metal bioremediation by thermophilic microorganisms. In: Satyanarayana T, Littlechild J, Kawarabayasi Y (eds) Thermophilic microbes in environmental and industrial biotechnology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5899-5_6

    Chapter  Google Scholar 

  • Sarioglu M, Akkoyun S, Bisgin T (2010) Inhibition effects of metals (copper, nickel, zinc, lead) on anaerobic sludge. Desalin Water Treat 23:55–60. https://doi.org/10.5004/dwt.2010.1950

    Article  CAS  Google Scholar 

  • Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Horn DJV, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. ApplEnviron Microbiol 75:7537–7541

    CAS  Google Scholar 

  • Sheng Y, Cao H, Li Y, Zhang Y (2011) Effects of sulfide on sulfate reducing bacteria in response to Cu(II), Hg(II) and Cr(VI) toxicity. Chin Sci Bull 56:862–868. https://doi.org/10.1007/s11434-011-4397-z

    Article  CAS  Google Scholar 

  • Ture M, Altinok I, Alp H (2018) Effects of cage farming on antimicrobial and metal resistance of Escherichia coli, Enterococcus faecium, and Lactococcus garvieae. Microb Drug Resist 24(9):1422–1430. https://doi.org/10.1089/mdr.2018.0040

    Article  CAS  Google Scholar 

  • USEPA (United States Environmental Protection Agency) (1994) Method 3051. Microwave assisted acid digestion of sediments, sludges. Soils and oilsl. Revision 0. September.

  • Utgikar VP, Tabak HH, Haines JR, Govind R (2003) Quantification of toxic and inhibitory impact of copper and zinc on mixed cultures of sulfate-reducing bacteria. Biotechnol Bioeng 82:306–312. https://doi.org/10.1002/bit.10575

    Article  CAS  Google Scholar 

  • Vollenweider S, Lacroix C (2004) 3-hydroxypropionaldehyde: applications and perspectives of biotechnological production. Appl Microbiol Biotechnol 64:16–27. https://doi.org/10.1007/s00253-003-1497-y

    Article  CAS  Google Scholar 

  • Wieczorek-Dąbrowska W, Tomza-Marciniak A, Pilarczyk B, Balicka-Ramisz A (2013) Roe and red deer as bioindicators of metals contamination in north-western Poland. Chem Ecol 29:100–110

    Article  Google Scholar 

  • Yarza P, Yilmaz P, Pruesse E, Glockner FO, Ludwig W, Scheifer K, Whitman WB, Euzeby J, Amann R, Rosseló-Móra R (2014) Uniting the classification of cultured and uncultured bacteria and achaea using 16S rRNA gene sequences. Nature reviews 12:635–645

    CAS  Google Scholar 

  • Yilmaz P, Parfrey LW, Yarza P, Gerken J, Pruesse E, Quast C, Schweer T, Peplies J, Ludwig W, Glöckner FO (2014) The SILVA and “All-species Living Tree Project (LTP)” taxonomic frameworks. Nucleic Acids Res 42:643–648. https://doi.org/10.1093/nar/gkt1209

    Article  CAS  Google Scholar 

  • Zayed G, Winter J (2000) Inhibition of methane production from whey by metals—protective effect of sulfide. Appl Microbiol Biotechnol 53:726–731. https://doi.org/10.1007/s002530000336

    Article  CAS  Google Scholar 

  • Zhang W, Wang H (2016) Preparation of immobilized sulfate reducing bacteria (SRB) granules for effective bioremediation of acid mine drainage and bacterial community analysis. Miner Eng 92:63–71

    Article  CAS  Google Scholar 

  • Zhang L, Lin X, Wang J, Jiang F, Wei L, Chen G, Hao X (2016) Effects of Lead and Mercury on Sulfate-Reducing Bacterial Activity in a Biological Process for Flue Gas Desulfurization Wastewater Treatment. Sci Rep 6(1). https://doi.org/10.1038/srep30455

  • Zouch H, Karray F, Armougom F, Chifflet S, Hirschker-Réa A, Kharrat H, Kamoun L, Hania WB, Ollivier B, Sayadi S, Quéméneur M (2017) Microbial diversity in sulfate-reducing marine sediment enrichment cultures associated with anaerobic biotransformation of coastal stockpiled phosphogypsum (Sfax, Tunisia). Front Microbiol 8:1583. https://doi.org/10.3389/fmicb.2017.01583

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Brazilian funding agency known as the Association for the Improvement of Higher Education Personnel (CAPES) for the fellowship.

Funding

This research was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Finance Code 001, fellowship no. 88882.434109/2019-01.

Author information

Authors and Affiliations

Authors

Contributions

Bruna Del Busso Zampieri, Gunther Brucha, and Irene Sánchez-Andrea designed the research. Oliveira AJF organized the sampling collection. Bruna Del Busso Zampieri performed sampling. Bruna Del Busso Zampieri and Elis Watanabe Nogueira performed experimental work. Bruna Del Busso Zampieri performed data analysis and wrote the manuscript with critical revision by Gunther Brucha, Irene Sánchez-Andrea, and Ana Julia Fernandes Cardoso de Oliveira with input from all authors.

Corresponding author

Correspondence to Bruna Del Busso Zampieri.

Ethics declarations

Ethics approval and consent to participate

Not applicable

Consent for publication

Not applicable

Competing interests

The authors declare no competing interest.

Additional information

Responsible Editor: Robert Duran

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zampieri, B.D.B., Nogueira, E.W., de Oliveira, A.J.F.C. et al. Effects of metals on activity and community of sulfate-reducing bacterial enrichments and the discovery of a new heavy metal-resistant SRB from Santos Port sediment (São Paulo, Brazil). Environ Sci Pollut Res 29, 922–935 (2022). https://doi.org/10.1007/s11356-021-15418-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-15418-9

Keywords

Navigation