Skip to main content
Log in

Effects of nitrite graded doses on hepatotoxicity and nephrotoxicity, histopathological alterations, and activation of apoptosis in adult rats

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Nitrites are found in several forms; they are widely found in water resources and used as additives and preservatives for food and as a color source. We investigated the hazardous effects of exposing rats to different doses of nitrites. Moreover, we examined such impacts, after acute ingestion, on liver and renal tissues in rats and to what extent this affects the organs’ functions. Animals were divided into five groups: one control group 1 (group C) and four sodium nitrite (NaNO2)–treated group (8 rats per group). The four NaNO2-treated groups include group 2 (N20), group 3 (N40), group 4 (N60), and group 5 (N75). NaNO2 was dissolved in distilled water, and single acute dose was orally given by gavage at 20, 40, 60, and 75 mg/kg body weight, respectively. Our results revealed significant increase of liver enzymes activity—aspartate transaminase (AST), alanine aminotransferase (ALT), and creatinine between different groups with increasing doses of nitrite ingestion. The results of hepatic and renal oxidative stress showed significant increase in the malondialdehyde (MDA) levels and significant decrease in the antioxidant parameters, such as reduced glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT), as the dose of nitrite increases. Further, the methemoglobin percent showed significant increase with increasing nitrite doses. Abnormal morphological alterations in the liver and kidney tissues were obviously proportional to the administered nitrite doses. The expression of caspase 3 and Bax level showed enhanced induction of immunoexpression, especially in the high doses of nitrites. On the other hand, the maximal immunoexpression level of anti-apoptotic marker Bcl2 was found in lower doses of nitrites, whereas marked decrease of Bcl2 levels was observed in the higher doses. In conclusion, administration of sodium nitrite in a dose-dependent manner is capable of inducing cellular and genetic toxicities and causes disturbance in biochemical analysis, oxidative and anti-oxidative balance, and methemoglobinemia. It also makes histopathological alterations and leads to the activation of apoptosis-related Bax, Bcl2, and caspase 3 genes of liver and kidney tissues in rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abdel-Rahman HG, Abd-El-Fattah ME, Youssef MF, Essawi EART, Elsedawy MEI (2018) The protective effect of different doses of alpha lipoic acid against hepatotoxicity of sodium nitrite in rat. Int J Dev Res 08(11):24140–24145

    Google Scholar 

  • Abu Aita NA, Mohammed FF (2014) Effect of marjoram oil on the clinicopathological, cytogenetic and histopathological alterations induced by sodium nitrite toxicity in rats. Global Veterinaria 12(5):606–616. https://doi.org/10.5829/idosi.gv.2014.12.05.83186

    Article  Google Scholar 

  • Abuharfeil N, Sarsour E, Hassuneh M (2001) The effect of sodium nitrite on some parameters of the immune system. Food Chem Toxicol 39(2):119–124

    Article  CAS  Google Scholar 

  • Adams JM, Cory S (1998) The Bcl2 protein family. Arbiters of cell survivor. Science; 281:1322–1326

  • Ahmad I, Zafeer MF, Javed M, Ahmad M (2018) Pendimethalin-induced oxidative stress, DNA damage and activation of anti-inflammatory and apoptotic markers in male rats. Sci Rep 8:17139. https://doi.org/10.1038/s41598-018-35484-3

    Article  CAS  Google Scholar 

  • Al Rasheed NM, Fadda LM and Attia HA et al. (2016) Quercetin inhibits sodium nitrite-induced inflammation and apoptosis in different rats organs by suppressing Bax, HIF-α, TGF-B,Smad-2, and AKT pathways. JBiochem Mol Toxicol e21883 https://doi.org/10.1002/jbt.21883

  • Al-Sayed E, Abdel-Daim MM, Khattab MA (2019) Hepatoprotective activity of praecoxin A isolated from Melaleuca ericifolia against carbon tetrachloride-induced hepatotoxicity in mice. Impact on oxidative stress, inflammation, and apoptosis. Phytother Res 33:461–470

    Article  CAS  Google Scholar 

  • Ansari FA, Ali SN, Mahmood R (2015) Sodium nitrite-induced oxidative stress causes membrane damage, protein oxidation, lipid peroxidation and alters major metabolic pathways in human erythrocytes. Toxicol Vitr 29(7):1878–1886. https://doi.org/10.1016/j.tiv.2015.07.022

    Article  CAS  Google Scholar 

  • Ansari FA, Ali SN, Arif H, Khan AA, Mahmood R (2017) Acute oral dose of sodium nitrite induces redox imbalance, DNA damage, metabolic and histological changes in rat intestine. Borrelli F, ed. PLoS One. 12(4):e0175196. https://doi.org/10.1371/journal.pone.0175196

  • Ansari FA, Ali SN, Khan AA (2018a) Acute oral dose of sodium nitrite causes redox imbalance and DNA damage in rat kidney. J Cell Biochem 119:3744-3754. DOI: 10. 1002/jcb 26611

  • Ansari SM, Saquib Q, Attia SM et al. (2018b) Pendimethalin induces oxidative stress, DNA damage and, mitochondrial dysfunction to trigger apoptosis in human lymphocytes and rat bone marrow cells. Histochem Cell Biol. 149(2) 127–141. DOI: 10.100 7/S00418–017–1622-0

  • Archer MC (2012) Hazards of nitrate, nitrite and N-nitroso compounds in human nutrition. Nutr Toxicol 1:327

    Google Scholar 

  • Bancroft OD and Stevens A (2010). Theory and practice of histological technique. Chirchil Livingstone, Edinburgh, London and New york

  • Behroozaghdam M, Hashemi M, Javadi G et al (2015) Expression of bax and bcl2 genes in MDMA-induced hepatotoxicity on rat liver using quantitative real-time PCR method through triggering programmed cell death. Iran Red Crescent Med J 17(11):e24609

    Article  Google Scholar 

  • Beutler E, Lichtman MA, Coller BS et al (1995) Williams hematology, 5th edn. Mc Graw-Hill, New York, pp 654–663

    Google Scholar 

  • Carlström M, Persson AEG, Larsson E, Hezel M, Scheffer PG, Teerlink T, Weitzberg E, Lundberg JO (2011) Dietary nitrate attenuates oxidative stress, prevents cardiac and renal injuries, and reduces blood pressure in salt-induced hypertension. Cardiovasc Res 89(3):574–585. https://doi.org/10.1093/cvr/cvq366

    Article  CAS  Google Scholar 

  • Chan YH (2003) Biostatistics102: quantitative data – parametric & non-parametric tests. Singap Med J 44(8):391–396

    CAS  Google Scholar 

  • Chattopadhyay S, Das T, Sa G, Ray PK (2002) Protein A-activated macrophages induce apoptosis in Ehrlich’s ascites carcinoma through a nitric oxide - dependent pathway. Apoptosis. 7(1):49–57

    Article  CAS  Google Scholar 

  • Chipuk JE, Kuwana T, Bouchier-Hayes LB et al. (2004) Direct activation of Bax by P53 mediates mitochondrial membrane permeabilization and apoptosis. Science; 303 (5660) 1010-4. https://doi.org/10.1126/science.1092734

  • Choi SY, Chung MJ, Sung NJ (2002) Volatile N-nitrosamine inhibition after intake Korean green tea and Maesil (Prunus mume SIEB. et ZACC.) extracts with an amine-rich diet in subjects ingesting nitrate. Food Chem Toxicol 40(7):949–957

    Article  CAS  Google Scholar 

  • Chui JSW, Poon WT, Chan KC, Chan AYW, Buckley TA (2005) Nitrite-induced methaemoglobinaemia - aetiology, diagnosis and treatment. Anaesthesia. 60(5):496–500. https://doi.org/10.1111/j.1365-2044.2004.04076.x

    Article  CAS  Google Scholar 

  • De Roos AJ, Ward MH, Lynch CF, Cantor KP (2003) Nitrate in public water supplies and the risk of colon and rectum cancers. Epidemiology. 14(6):640–649. https://doi.org/10.1097/01.ede.0000091605.01334.d3

    Article  Google Scholar 

  • Dwivedi N, Flora G, Kushwaha P, Flora SJS (2014) Alpha-lipoic acid protects oxidative stress, changes in cholinergic system and tissue histopathology during co-exposure to arsenic-dichlorvos in rats. Environ Toxicol Pharmacol 37(1):7–23. https://doi.org/10.1016/j.etap.2013.10.010

    Article  CAS  Google Scholar 

  • Ellman GL (1959) Tissue sulfhydryl groups. Arch of Bioch & Biophys 82:70–77

    Article  CAS  Google Scholar 

  • El-Sharaky AS, Newairy AA, Badreldeen MM, Eweda SM, Sheweita SA (2007) Protective role of selenium against renal toxicity induced by cadmium in rats. Toxicology. 235(3):185–193. https://doi.org/10.1016/j.tox.2007.03.014

    Article  CAS  Google Scholar 

  • El-Sheikh NM, Khalil FA (2011) L-Arginine and l-glutamine as immunonutrients and modulating agents for oxidative stress and toxicity induced by sodium nitrite in rats. Food Chem Toxicol 49(4):758–762. https://doi.org/10.1016/j.fct.2010.11.039

    Article  CAS  Google Scholar 

  • Evelyn KA, Malloy HAT (1983) Microdetermination of oxyhe-moglobin, methemoglobin and sulfhemoglobin in a single sample of blood. J Biol Chem 126:655–664

    Google Scholar 

  • Fadda LM, Attia HA, Al-Rasheed NM et al (2018) Roles of some antioxidants in modulation of cardiac myopathy induced by sodium nitrite via down-regulation of mRNA expression of NF-kB, Bax and flt-1 and suppressing DNA damage. Saudi Pharm J 26(2):217–223. https://doi.org/10.1016/J.JSPS.2017.12.008

    Article  Google Scholar 

  • Heihashy M, El-Moneim A (1999) Blood lipid profile and serum free thyroidal hormone concentrations in growing rats fed diets enriched with sodium nitrate for short and long terms. J Egypt Ger Soc Zool 30(A):93–103

    Google Scholar 

  • Helal E, Zahkok S, Soliman G, Al-Kassas M, H. Wahed A (2008) Biochemical studies on the effect of sodium nitrite and/or glutathione treatment on male rats. Egypt J Hosp Med 30:25–38

  • Honikel K-O (2008) The use and control of nitrate and nitrite for the processing of meat products. Meat Sci 78(1–2):68–76. https://doi.org/10.1016/j.meatsci.2007.05.030

    Article  CAS  Google Scholar 

  • Hord NG, Tang Y, Bryan NS (2009) Food sources of nitrates and nitrites: the physiologic context for potential health benefits. Am J Clin Nutr 90:1–10. https://doi.org/10.3945/ajcn.2008.27131

  • Hord NG (2011) Dietary nitrates, nitrites, and cardiovascular disease. Curr Atheroscler Rep 13:484–492. https://doi.org/10.1007/s11883-011-0209-9

  • Husdant H, Rapaport A (1958) Estimation of creatinine. Clin Chem 14:222

    Article  Google Scholar 

  • Hussein H and Elnaggar M (2012) Protective role of vitamin C against hepatorenal toxicity of fenvalerate in male rats. Global Advanced Research J Environ Sci Toxicol. (4):60-65

  • Ibrahim A, Zaky Z, Sharkawy A, Mubarak M (1999) Effect of vitamin C on nitrate toxicity in ducks. The 15th Annual Conference for Egyptian Soci of Toxicl

  • Imaizumi K, Tyuma I, Imai K et al (1980) In vivo studies on methemoglobin formation by sodium nitrite. Int Arch Occup Environ Health 45:97–104

    Article  CAS  Google Scholar 

  • Jensen FB (2007) Nitric oxide formation from nitrite in zebrafish. J Exp Biol 210(Pt 19):3387–3394. https://doi.org/10.1242/jeb.008748

    Article  CAS  Google Scholar 

  • Jensen FB (2003) Nitrite disrupts multiple physiological functions in aquatic animals. Comp Biochem Physiol A Mol Integr Physiol 135(1):9–24

    Article  Google Scholar 

  • Jia R, Han C, Lei J-L, Liu BL, Huang B, Huo HH, Yin ST (2015) Effects of nitrite exposure on haematological parameters, oxidative stress and apoptosis in juvenile turbot (Scophthalmus maximus). Aquat Toxicol 169:1–9. https://doi.org/10.1016/j.aquatox.2015.09.016

    Article  CAS  Google Scholar 

  • Jin Y, Zheng S, Pu Y et al. (2011) Cypermethrin has the potential to induce hepatic oxidative stress, DNA damage and apoptosis in adult zebrafish (Danio rerio). Chemosphere. 82(3): 398-404. DOI: 10. 1016/j. Chemosphere. 2010.09.072

  • Kaplan A, Smith C, Promnitz DA, Joffe BI, Seftel HC (1990) Methaemoglobinaemia due to accidental sodium nitrite poisoning. Report of 10 cases. S Afr Med J 77(6):300–301

    CAS  Google Scholar 

  • Katabami K, Hayakawa M, Gando S (2016) Severe methemoglobinemia due to sodium nitrite poisoning. Case Rep Emerg Med 2016:e9013816

    Google Scholar 

  • Kelainy EG, Ibrahim Laila IM, Ibrahim SR (2019) The effect of ferulic acid against lead-induced oxidative stress and DNA damage in kidney and testes of rats. Environ Sci Pollut Res Int 26:31675–31684. https://doi.org/10.1007/s11356-019-06099-6

    Article  CAS  Google Scholar 

  • Kohn MC, Melnick RL, Ye F, Portier CJ (2002) Pharmacokinetics of sodium nitrite-induced methemoglobinemia in the rat. Drug Metab Dispos 30(6):676–683

    Article  CAS  Google Scholar 

  • Korolyuk MA, Ivanova LI, Majorova IT (1988) Methods of definition of catalase activity. Lab Manuals 1:16–19

    Google Scholar 

  • Kostyuk VA, Potapovich AI, Kovaleva JI (1990) Simple and sensitive method of definition of superoxide dismutase, based on reaction of oxidation of kvercetine. Questions Med Chem 2:88–91

    Google Scholar 

  • Lawniczak AE, Zbierska J, Nowak B, Achtenberg K, Grześkowiak A, Kanas K (2016) Impact of agriculture and land use on nitrate contamination in groundwater and running waters in central-west Poland. Environ Monit Assess 188(3):172. https://doi.org/10.1007/s10661-016-5167-9

    Article  CAS  Google Scholar 

  • Li J, Li F, Liu Q, Suzuki Y (2014) Nitrate pollution and its transfer in surface water and groundwater in irrigated areas: a case study of the Piedmont of South Taihang Mountains, China. Environ Sci Process Impacts 16(12):2764–2773. https://doi.org/10.1039/C4EM00200H

    Article  CAS  Google Scholar 

  • Lundberg JO, Weitzberg E, Gladwin MT (2008) The nitrate-nitrite-nitric oxide pathway in physiology and therapeutics. Nat Rev Drug Discov 7:156–167. https://doi.org/10.1038/nrd2466

  • Lundberg JO, Weitzberg E, Cole JA, Benjamin N (2004) Nitrate, bacteria and human health. Nat Rev Microbiol 2:593–602. https://doi.org/10.1038/nrmicro929

  • Marcus S, Kalaivanam K, Dharmalingam M (2006) Lipid peroxidation in type 2 diabetes mellitus. Int J Diabetes Dev Ctries 26(1):30. https://doi.org/10.4103/0973-3930.26889

    Article  Google Scholar 

  • McKenzie RA, Rayner AC, Thompson GK, Pidgeon GF, Burren BR (2004) Nitrate-nitrite toxicity in cattle and sheep grazing Dactyloctenium radulans (button grass) in stockyards. Aust Vet J 82(10):630–634

    Article  CAS  Google Scholar 

  • McNally B, Griffin JL, Roberts LD (2016) Dietary inorganic nitrate: from villain to hero in metabolic disease? Mol Nutr Food Res 60(1):67–78. https://doi.org/10.1002/mnfr.201500153

    Article  CAS  Google Scholar 

  • Messmer UK, Ankarcrona M, Nicotera P, Brune B (1994) P53 expression in nitric oxide- induced apoptosis. FEBs Lett; 255-23

  • Mohorovic L, Lavezzi AM, Jonjic N et al (2017) Methemoglobinemia as biomarker and precursor of brain capillary oxidative damage link to ferric iron accumulation and originator of neurodegenerative diseases. J Syst Integr Neurosci 3(5):1–5

    Article  CAS  Google Scholar 

  • Molpeceres V, Mauriz JL, García-Mediavilla MV et al (2007) Melatonin is able to reduce the apoptotic liver changes induced by aging via inhibition of the intrinsic pathway of apoptosis. J Gerontol A Biol Sci Med Sci 62(7):687–695

    Article  Google Scholar 

  • Nujie M and Habuda-Stanic (2017) Nitrates and nitrites, metabolism and toxicity. Scientific Professional Journal of Nutrition and Dietetics 6(2): 48–89

  • Ohshima H, Yoshie Y, and Auriol S, Gilibert I (1998) Antioxidant and proxidant actions of flavonoids effects on DNA damage induced by nitric oxide, peroxynitrite and nitroxyl anion. Free Radic Biol. Med; 25:1057–1065

  • Özen H, Kamber U, Karaman M et al (2014) Histopathologic, biochemical and genotoxic investigations on chronic sodium nitrite toxicity in mice. Exp Toxicol Pathol 66(8):367–375. https://doi.org/10.1016/j.etp.2014.05.003

    Article  CAS  Google Scholar 

  • Ozmen O, Mor F, Ayhan U (2003) Nitrate poisoning in cattle fed Chenopodium album hay. Vet Hum Toxicol 45(2):83–84

    Google Scholar 

  • Patsoukis N, Georgiou CD (2007) Effect of sulfite–hydrosulfite and nitrite on thiol redox state, oxidative stress and sclerotial differentiation of filamentous phytopathogenic fungi. Pestic Biochem Physiol 88:226–235

    Article  CAS  Google Scholar 

  • Patton MP, Crouch SR (1977) Determination of urea ( urease modified Berthelot reaction). Anal Chem. (49): 464-469

  • Pluta RM, Dejam A, Grimes G, Gladwin MT, Oldfield EH (2005) Nitrite infusions to prevent delayed cerebral vasospasm in a primate model of subarachnoid hemorrhage. J Am Med Assoc 293:1477–1484

    Article  CAS  Google Scholar 

  • Radi R (2004) Nitric oxide, oxidants, and protein tyrosine nitration. Proc Natl Acad Sci U S A 101(12):4003–4008. https://doi.org/10.1073/pnas.0307446101

    Article  CAS  Google Scholar 

  • Reitman S, Frankels S (1957) A colorimetric method for determination of serum glutamic oxaloacetic transaminase and serum glutamic pyruvic transaminase. Am J Clin Pathol:25–56

  • Riedl SJ, Shi Y (2004) Molecular mechanisms of caspase regulation during apoptosis. Nat Rev Mol Cell Biol 5:897–907

    Article  CAS  Google Scholar 

  • Rozanova S, Cherkashina Y, Repina S, Rozanova K, Nardid O (2012) Protective effect of placenta extracts against nitrite-induced oxidative stress in human erythrocytes. Cell Mol Biol Lett 17(2):240–248. https://doi.org/10.2478/s11658-012-0007-6

    Article  CAS  Google Scholar 

  • Salakov S, Kardamakis D, Tsamandas AC et al (2007) Increased Bax/Bcl2 ratio up-regulates caspase-3 and increases apoptosis in the thymus of patients with myasthenia gravis. In vivo 21:123–132

    Google Scholar 

  • Sohn CH, Seo DW, Ryoo SM et al (2014) Life-threatening methemoglobinemia after unintentional ingestion of antifreeze admixtures containing sodium nitrite in the construction sites. Clin Toxicol Phila Pa 52:44–47

    Article  CAS  Google Scholar 

  • Tietz NW (1986) Textbook of clinical chemistry. WB Saunders, Philadelphia

    Google Scholar 

  • Tricker AR, Preussmann R (1991) Carcinogenic N-nitrosamines in the diet: occurrence, formation, mechanisms and carcinogenic potential. Mutat Res 259(3–4):277–289

    Article  CAS  Google Scholar 

  • Webb A, Bond R, McLean P et al (2004) Reduction of nitrite to nitric oxide during ischemia protects against myocardial ischemia–reperfusion damage. Proc Natl Acad Sci U S A 101:13683–13688

    Article  CAS  Google Scholar 

  • Wills ED (1987) Evaluation of lipid peroxidation in lipids and biological membranes. In: Snell K, Mullock B, eds. Biochemical toxicology: a practical approach. London: Oxford

  • Yang B, Johnson TS. Thomas GL et al. (2001) Expression of apoptosis related genes and proteins in experimental chronic renal scarring. J A Soc Nephrol 12:275–288

  • Yao Y, Zhang YW, Sun LG, Liu B, Bao YL, Lin H, Zhang Y, Zheng LH, Sun Y, Yu CL, Wu Y, Wang GN, Li YX (2012) Juglanthraquinone C, a novel natural compound derived from Juglans mandshurica Maxim, induces S phase arrest and apoptosis in HepG2 cells. Apoptosis 17:832–841

    Article  CAS  Google Scholar 

  • Yu H, Luo H, Lu X, Song Q, Fan Z (2002) Investigation on acute nitrite poisoning in Yangjiang city, Guangdong province, China. Zhonghua Liu Xing Bing Xue Za Zhi 23(6):419–421

    Google Scholar 

  • Zand J, Lanza F, Garg HK, Bryan NS (2011) All-natural nitrite and nitrate containing dietary supplement promotes nitric oxide production and reduces triglycerides in humans. Nutr Res 31(4):262–269

    Article  CAS  Google Scholar 

  • Zhan Z, Lapolla SM, Annis MG, et al. (2004) Bcl2 homodimerization involves two distinct binding surfaces, a topographic arrangement that provides an effective mechanism for Bcl2 to capture activated Bax. J Biol chem 279(42): 439 20-8 DOI: https://doi.org/10.1074/jbc.M406412200

  • Zurovsky Y, Haber C (1995) Antioxidants attenuate endotoxin-gentamicin induced acute renal failure in rats. Scand J Urol Nephrol 29(2):147–154. https://doi.org/10.3109/00365599509180555

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nagla A. El-Nabarawy.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Responsible editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Nabarawy, N.A., Gouda, A.S., Khattab, M.A. et al. Effects of nitrite graded doses on hepatotoxicity and nephrotoxicity, histopathological alterations, and activation of apoptosis in adult rats. Environ Sci Pollut Res 27, 14019–14032 (2020). https://doi.org/10.1007/s11356-020-07901-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-07901-6

Keywords

Navigation