Skip to main content

Advertisement

Log in

Is obstructive sleep apnea syndrome a risk factor for auditory pathway?

  • Original Article
  • Published:
Sleep and Breathing Aims and scope Submit manuscript

Abstract

Purpose

The transduction mechanism of the inner ear and the transmission of nerve impulses along the auditory way are highly dependent upon the cochlear oxygen supply. Several studies have considered the possibility that obstructive sleep apnea–hypopneas during sleep can interfere with these processes, and the results are not uniform. The aim of the study is to evaluate the auditory function in adult patients affected by severe obstructive sleep apnea syndrome (OSAS).

Methods

Thirty-nine patients in this study were included and divided in OSAS group, with severe OSAS (Apnea–Hypopnea Index, AHI > 30), and control group with snoring without OSAS (AHI < 5). Each patient was subjected to pure-tone audiogram (PTA), otoacoustic emission (OAE), and brainstem auditory evoked potentials.

Results

The OSAS group showed a PTA significantly higher than the control group (14.23 ± 6.25 vs. 7.45 ± 2.54; p < 0.01), a lower TEOAE reproducibility (0.57 ± 0.10 vs. 0.92 ± 0.10; p < 0.01) such as a lower signal-to-noise 0atio (p < 0,01) and a lower DPOAE amplitude (5.96 ± 6.34; 13.18 ± 2.97; p < 0.01). The mean latencies of waves I, III, and V were prolonged in OSAS group as compared to the healthy people, especially for wave V (p < 0.05). The interpeak latency (IPL) of I–V was significantly higher (p < 0.01) in the OSAS patients (5.84 ± 0.15) as compared to the control group (5.4 ± 0.12), such as IPLs I–III and III–V (p < 0.05).

Conclusions

Our data showed an auditory dysfunction in patients affected by severe OSAS, suggesting that severe OSAS could represent a risk factor for auditory pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bradley TD, Floras JS (2009) Obstructive sleep apnoea and its cardiovascular consequences. Lancet 373:82–93

    Article  PubMed  Google Scholar 

  2. Redline S, Tishler P (2003) The genetics of sleep apnea. Sleep Med Rev 4:583–602

    Article  Google Scholar 

  3. Fletcher EC (1995) The relationship between systemic hypertension and obstructive sleep apnea: facts and theory. Am J Med 98:118–128

    Article  PubMed  CAS  Google Scholar 

  4. Logan AG, Perlikowski SM, Mente A, Tisler A, Tkacova R, Niroumand M, Leung RS, Bradley TD (2001) High prevalence of unrecognized sleep apnoea in drug-resistant hypertension. J Hypertens 19:2271–2277

    Article  PubMed  CAS  Google Scholar 

  5. Hui DS, Choy DK, Wong LK, Ko FW, Li TS, Woo J, Kay R (2002) Prevalence of sleep disordered breathing and continuous positive airway pressure compliance: results in Chinese patients with first-ever ischemic stroke. Chest 122:852–860

    Article  PubMed  Google Scholar 

  6. Hui DS, Wong TY, Ko FW, Li TS, Choy DK, Wong KK, Szeto CC, Lui SF, Li PK (2000) Prevalence of sleep disturbances in Chinese patients with end-stage renal failure on continuous ambulatory peritoneal dialysis. Am J Kidney Dis 36:783–788

    Article  PubMed  CAS  Google Scholar 

  7. Javaheri S, Parker TJ, Liming JD, Corbett WS, Nishiyama H, Wexler L, Roselle GA (1998) Sleep apnea in 81 ambulatory male patients with stable heart failure: types and their prevalences, consequences and presentations. Circulation 97:2154–2159

    PubMed  CAS  Google Scholar 

  8. Nazzaro P, Schirosi G, Clemente R, Battista L, Serio G, Boniello E, Carratù PL, Lacedonia D, Federico F, Resta O (2008) Severe obstructive sleep apnoea exacerbates the microvascular impairment in very mild hypertensives. Eur J Clin Invest 38:766–773

    Article  PubMed  CAS  Google Scholar 

  9. Gozal D, Kheirandish-Gozal L (2008) Cardiovascular morbidity in obstructive sleep apnea: oxidative stress, inflammation, and much more. Am J Respir Crit Care Med 177:369–375

    Article  PubMed  CAS  Google Scholar 

  10. Fanfulla F, Grassi M, Taurino AE, Lupo ND, Trentin R (2008) The relationship of daytime hypoxemia and nocturnal hypoxia in obstructive sleep apnea syndrome. Sleep 31(2):249–255

    PubMed  Google Scholar 

  11. Colrain IM, Campbell KB (2007) The use of evoked potentials in sleep research. Sleep Med Rev August 11(4):277–293

    Article  Google Scholar 

  12. Gupta PP, Sood S, Atreja A, Agarwal D (2008) Evaluation of brain stem auditory evoked potentials in stable patients with chronic obstructive pulmonary disease. Ann Thor Med 3:128–134

    Article  Google Scholar 

  13. Ni D (1991) Auditory brain-stem response in obstructive sleep apnea syndrome. Zhonghua Er Bi Yan Hou Ke Za Zhi 26(284–6):317

    Google Scholar 

  14. Van Dijk P, Wit HP (1987) The occurrence of click-evoked oto-acoustic emissions (“Kemp echoes”) in normal-hearing ears. Scand Audiol 16:62–64

    Article  PubMed  Google Scholar 

  15. Bonfils P, Avan P (1992) Distortion-product otoacoustic emissions. Values for clinical use. Arch Otolaryngol Head Neck Surg 118:1069–1076

    Article  PubMed  CAS  Google Scholar 

  16. Gaskill SA, Brown AM (1990) The behavior of the acoustic distortion product, 2f1-f2, from the human ear and its relation to auditory sensitivity. J Acoust Soc Am 88:821–839

    Article  PubMed  CAS  Google Scholar 

  17. Celesia GG, Bodis-Wollner I, Chatrian GE, Harding GF, Sokol S, Spekreijse H (1993) Recommended standards for electroretinograms and Visual evoked potentials: report of an IFCN committee. Electroencephalogr Clin Neurophysiol 87:421–436

    Article  PubMed  CAS  Google Scholar 

  18. Mishra UK, Kalita J (2004) Clinical neurophysiology, 1st edn. Reed Elsevier India Private Limited, New Delhi, pp 267–286

    Google Scholar 

  19. Carlile S, Paterson DJ (1992) The effects of chronic hypoxia on human auditory system sensitivity. Aviat Space Environ Med 63:1093–1097

    PubMed  CAS  Google Scholar 

  20. Mazurek B, Haupt H, Georgiewa P, Klapp BF, Reisshauer A (2006) A model of peripherally developing hearing loss and tinnitus based on the role of hypoxia and ischemia. Med Hypotheses 67:892–899

    Article  PubMed  CAS  Google Scholar 

  21. Gafni M, Sohmer H (1976) Intermediate endocochlear potential levels induced by hypoxia. Acta Otolaryngol 82:354–358

    Article  PubMed  CAS  Google Scholar 

  22. She WD, Zhang Q, Chen F, Jiang P, Wang J (2004) Peri-uvulopalatopharyngoplasty otoacoustic emissions in patients with obstructive sleep apnea-hypopnea syndrome. Zhonghua Er Bi Yan Hou Ke Za Zhi 39:48–51

    PubMed  Google Scholar 

  23. Sha SH, Taylor R, Forge A, Schacht J (2001) Differential vulnerability of basal and apical hair cells is based on intrinsic susceptibility to free radicals. Hear Res 155:1–8

    Article  PubMed  CAS  Google Scholar 

  24. Fischer Y, Yakinthou A, Mann WJ (2003) Prevalence of obstructive sleep apnea syndrome (OSA) in patients with sudden hearing loss. A pilot study. HNO 51:462–466

    Article  PubMed  CAS  Google Scholar 

  25. Mehra R, Redline S (2008) Sleep apnea: a proinflammatory disorder that coaggregates with obesity. J Allergy Clin Immunol 121(5):1096–1102

    Article  PubMed  Google Scholar 

  26. Chung S, Yoon IY, Lee CH, Kim JW (2010) The association of nocturnal hypoxemia with arterial stiffness and endothelial dysfunction in male patients with obstructive sleep apnea syndrome. Respiration 79(5):363–369

    Article  PubMed  Google Scholar 

  27. Sohmer H, Freeman S, Schmuel M (1989) ABR threshold is a function of blood oxygen level. Hear Res 40:87–92

    Article  PubMed  CAS  Google Scholar 

  28. Muchnik C, Rubel Y, Zohar Y, Hildesheimer M (1995) Auditory brainstem response in obstructive sleep apnea patients. J Basic Clin Physiol Pharmacol 6:139–148

    Article  PubMed  CAS  Google Scholar 

  29. El-Kady MA, Durrant JD, Tawfik S, Abdel-Ghany S, Moussa AM (2006) Study of auditory function in patients with chronic obstructive pulmonary diseases. Hear Res 212:109–116

    Article  PubMed  Google Scholar 

  30. Miyamoto T, Miyamoto M, Takekawa H, Kubo J, Hirata K, Katayama S (2001) A comparison of middle latency auditory-evoked response in obstructive sleep apnea syndrome before and after treatment. Psychiatry Clin Neurosci 55:251–252

    Article  PubMed  CAS  Google Scholar 

  31. Dziewas R, Schilling M, Engel P, Boentert M, Hor H, Okegwo A, Lüdemann P, Ringelstein EB, Young P (2007) Treatment for obstructive sleep apnoea: effect on peripheral nerve function. J Neurol Neurosurg Psychiatr 78:295–297

    Article  PubMed  Google Scholar 

  32. Pfeifer G, Kunze K, Bruch M, Kutzner M, Ladurner G, Malin JP (1990) Polyneuropathy associated with chronic hypoxaemia: prevalence in patients with chronic obstructive pulmonary disease. J Neurol 237:230–233

    Article  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuele Casale.

Appendix

Appendix

Definition of abbreviations used in the text

OSAS:

Obstructive sleep apnea syndrome

ODI:

Oxygen desaturation index

SAT. O2:

Mean oxygen saturation

AHI:

Apnea/hypopnea index

BMI:

Body mass index [kg/m2]

PSG:

Polysomnography

PTA:

Pure-tone audiometry

OAE:

Otoacoustic emission

ABR:

Auditory brainstem response

BAEP:

Brainstem auditory evoked potentials

Rights and permissions

Reprints and permissions

About this article

Cite this article

Casale, M., Vesperini, E., Potena, M. et al. Is obstructive sleep apnea syndrome a risk factor for auditory pathway?. Sleep Breath 16, 413–417 (2012). https://doi.org/10.1007/s11325-011-0517-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11325-011-0517-x

Keywords

Navigation