Skip to main content
Log in

High-throughput sequencing analysis of common fig (Ficus carica L.) transcriptome during fruit ripening

  • Original Paper
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

The Ficus carica L. (Moraceae) tree belongs to one of the largest genera of angiosperms and bears a unique closed inflorescence structure. Ripe fresh figs are highly perishable and require delicate postharvest handling. Studying the pathways that lead to fig ripening may provide additional ways of extending their storage life. We selected four developmental stages of fig fruit for transcriptome sequencing and analysis to identify the major active metabolic pathways and transcription factors during fig fruit ripening. We found 12,751 unigenes, 93 % of which were homologous to at least one nonredundant database sequence, and 46,927 singletons, 39 % with a matching sequence from the nonredundant database. Differential activity related to photosynthesis, anthocyanin and volatile metabolism, cell wall and wax metabolism, cell expansion, transcription, DNA metabolism and organization was traced. In addition, ethylene-synthesis genes were identified. Finally, 516 unigenes encoding transcription factors were found which were active in the regulation of early and late ripening processes. Focusing on eight FcMADS-box transcription factors revealed three genes encoding members of the AGL2 (SEP) subfamily, which is closely associated with ripening regulation. This study provides expressed-gene dataset for multiple developmental stages of fig fruit (F. carica), and analysis directed to ripening metabolism, control, and regulation. It provides a potential platform for further studies of this unique plant family and contributes to ripening process research in nonmodel systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Atkinson RG et al (2012) Down-regulation of POLYGALACTURONASE1 alters firmness, tensile strength and water loss in apple (Malus x domestica) fruit. BMC Plant Biol 12

  • Barry CS et al (2012) Altered chloroplast development and delayed fruit ripening caused by mutations in a zinc metalloprotease at the lutescent2 locus of tomato. Plant Physiol 159:1086–1098

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Becker A, Theissen G (2003) The major clades of MADS-box genes and their role in the development and evolution of flowering plants. Mol Phylogenet Evol 29:464–489

    Article  CAS  PubMed  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol 57:289–300

    Google Scholar 

  • Berg CC, Corner EJH (2005) Moraceae (Ficus). In: Noteboom HP (ed) Flora Malesiana. National Herbarium of Nederland, Leiden, pp 1–730

    Google Scholar 

  • Blanke MM, Lenz F (1989) Fruit photosynthesis. Plant Cell Environ 12:31–46

    Article  CAS  Google Scholar 

  • Bourdon M et al (2010) Endoreduplication and growth of fleshy fruits. In: Luttge U, Beyschlag W, Budel B, Francis D (eds) Progress in botany, 101–132

  • Bourdon M et al (2012) Evidence for karyoplasmic homeostasis during endoreduplication and a ploidy-dependent increase in gene transcription during tomato fruit growth. Development 139:3817–3826

    Article  CAS  PubMed  Google Scholar 

  • Brummell DA (2006) Cell wall disassembly in ripening fruit. Funct Plant Biol 33:103–119

    Article  CAS  Google Scholar 

  • Buck MJ, Atchley WR (2003) Phylogenetic analysis of plant basic helix-loop-helix proteins. J Mol Evol 56:742–750

    Article  CAS  PubMed  Google Scholar 

  • Chessa I (1997) Fig. In: Mitra S (ed) Postharvest physiology and storage of tropical and subtroplical fruits. CAB International, Wallingford, pp 245–268

    Google Scholar 

  • Chessa I, D’Agostino N, Cossu A, Mannu L (1992) Epicuticular wax structure and accumulation on main-crop fig fruit (Ficus carica L.) during development. Adv Hortic Sci 6:47–54

    Google Scholar 

  • Choudhury SR, Roy S, Nag A, Singh SK, Sengupta DN (2012) Characterization of an AGAMOUS-like MADS box protein, a probable constituent of flowering and fruit ripening regulatory system in banana. PLoS ONE 7

  • Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676

    Article  CAS  PubMed  Google Scholar 

  • Crosby EA (1954) Seasonal fluctuations of carbohydrates in the branches and fruit associated with growth regulator accelerated development of the Calimyrna fig. University of California, Davis

  • Du Z, Zhou X, Ling Y, Zhang Z, Su Z (2010) agriGO: a GO analysis toolkit for the agricultural community. Nucleic Acids Res 38:30

    Article  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Elitzur T, Vrebalov J, Giovannoni JJ, Goldschmidt EE, Friedman H (2010) The regulation of MADS-box gene expression during ripening of banana and their regulatory interaction with ethylene. J Exp Bot 61:1523–1535

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Feng C et al (2012) Transcriptomic analysis of Chinese bayberry (Myrica rubra) fruit development and ripening using RNA-Seq. BMC Genomics 13

  • Flaishman MA, Rodov V, Stover E (2008) The Fig: botany, horticulture, and breeding. In: Horticultural reviews, John Wiley & Sons, Inc. 113–196

  • Freiman ZE, Rodov V, Yablovitz Z, Horev B, Flaishman MA (2012) Preharvest application of 1-methylcyclopropene inhibits ripening and improves keeping quality of ‘Brown Turkey’ figs (Ficus carica L.). Sci Hortic 138:266–272

    Article  CAS  Google Scholar 

  • Gaffe J, Lemercier C, Alcaraz J-P, Kuntz M (2011) Identification of three tomato flower and fruit MADS-box proteins with a putative histone deacetylase binding domain. Gene 471:19–26

    Article  CAS  PubMed  Google Scholar 

  • Gonda I et al (2010) Branched-chain and aromatic amino acid catabolism into aroma volatiles in Cucumis melo L. fruit. J Exp Bot 61:1111–1123

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Grabowska A, Wisniewska A, Tagashira N, Malepszy S, Filipecki M (2009) Characterization of CsSEF1 gene encoding putative CCCH-type zinc finger protein expressed during cucumber somatic embryogenesis. J Plant Physiol 166:310–323

    Article  CAS  PubMed  Google Scholar 

  • Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704

    Article  PubMed  Google Scholar 

  • Halford NG (2006) Regulation of carbon and amino acid metabolism: roles of sucrose nonfermenting-1-related protein kinase-1 and general control nonderepressible-2-related protein kinase. In: Callow JA (ed) Advances in botanical research, 93–+

  • Harb J, Gapper NE, Giovannoni JJ, Watkins CB (2012) Molecular analysis of softening and ethylene synthesis and signaling pathways in a non-softening apple cultivar, ‘Honeycrisp’ and a rapidly softening cultivar, ‘McIntosh’. Postharvest Biol Technol 64:94–103

    Article  CAS  Google Scholar 

  • Ikegami H et al (2013) De novo sequencing and comparative analysis of expressed sequence tags from gynodioecious fig (Ficus carica L.) fruits: caprifig and common fig. Tree Genet Genomes 1–14

  • Ioannidi E et al (2009) Expression profiling of ascorbic acid-related genes during tomato fruit development and ripening and in response to stress conditions. J Exp Bot 60:663–678

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ireland HS et al (2013) Apple SEPALLATA1/2-like genes control fruit flesh development and ripening. Plant J 73:1044–1056

    Article  CAS  PubMed  Google Scholar 

  • Itkin M, Seybold H, Breitel D, Rogachev I, Meir S, Aharoni A (2009) TOMATO AGAMOUS-LIKE 1 is a component of the fruit ripening regulatory network. Plant J 60:1081–1095

    Article  CAS  PubMed  Google Scholar 

  • Jaakola L, Pirttila AM, Halonen M, Hohtola A (2001) Isolation of high quality RNA from bilberry (Vaccinium myrtillus L.) fruit. Mol Biotechnol 19:201–203

    Article  CAS  PubMed  Google Scholar 

  • Jia H et al (2013) Sucrose functions as a signal involved in the regulation of strawberry fruit development and ripening. New Phytol 198:453–465

    Article  CAS  PubMed  Google Scholar 

  • Jones DT, Taylor WR, Thornton JM (1992) The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 8:275–282

    CAS  PubMed  Google Scholar 

  • Kislev ME, Hartmann A, Bar-Yosef O (2006) Early domesticated fig in the Jordan Valley. Science 312:1372–1374

    Article  CAS  PubMed  Google Scholar 

  • Klee HJ, Giovannoni JJ (2011) Genetics and control of tomato fruit ripening and quality attributes. In: Bassler BL, Lichten M, Schupbach G (eds) Annual Review Genetics, Vol 45, 41–59

  • Kosma DK, Parsons EP, Isaacson T, Lue S, Rose JKC, Jenks MA (2010) Fruit cuticle lipid composition during development in tomato ripening mutants. Physiol Plant 139:107–117

    Article  CAS  PubMed  Google Scholar 

  • Leida C et al (2011) Identification and genetic characterization of an ethylene-dependent polygalacturonase from apricot fruit. Postharvest Biol Technol 62:26–34

    Article  CAS  Google Scholar 

  • Li ZS, Thomas TL (1998) PEI1, an embryo-specific zinc finger protein gene required for heart-stage embryo formation in Arabidopsis. Plant Cell 10:383–398

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li X et al (2012) De novo sequencing and comparative analysis of the blueberry transcriptome to discover putative genes related to antioxidants. Gene 511:54–61

    Article  CAS  PubMed  Google Scholar 

  • Lijavetzky D et al (2012) Berry flesh and skin ripening features in Vitis vinifera as Assessed by transcriptional profiling. PLoS ONE 7

  • Marei N, Crane JC (1971) Growth and respiratory response of fig (Ficus carica L. cv. ‘Mission’) fruits to ethylene. Plant Physiol 48:249

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Marei N, Romani R (1971) Ethylene stimulated synthesis of ribosomes, ribonucleic acid and protein in developing fig fruits. Plant Physiol 48:806

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Margulies M, Jarvie TP, Knight JR, Simons JF (2007) The 454 life sciences Picoliter sequencing system. In: Mitchelson KR (ed) New high throughput technologies for DNA sequencing and genomics, 153–186

  • Matas AJ, Gapper NE, Chung M-Y, Giovannoni JJ, Rose JKC (2009) Biology and genetic engineering of fruit maturation for enhanced quality and shelf-life. Curr Opin Biotechnol 20:197–203

    Article  CAS  PubMed  Google Scholar 

  • Mworia EG et al (2012) Low-temperature-modulated fruit ripening is independent of ethylene in ‘Sanuki Gold’ kiwifruit. J Exp Bot 63:963–971

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ohme-Takagi M, Shinshi H (1995) Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element. Plant Cell 7:173–182

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Oliveira AP et al (2010a) Determination of low molecular weight volatiles in Ficus carica using HS-SPME and GC/FID. Food Chem 121:1289–1295

    Article  CAS  Google Scholar 

  • Oliveira AP et al (2010b) Volatile profiling of Ficus carica varieties by HS-SPME and GC-IT-MS. Food Chem 123:548–557

    Article  CAS  Google Scholar 

  • Owino WO, Nakano R, Kubo Y, Inaba A (2004a) Alterations in cell wall polysaccharides during ripening in distinct anatomical tissue regions of the fig (Ficus carica L.) fruit. Postharvest Biol Technol 32:67–77

    Article  CAS  Google Scholar 

  • Owino WO, Nakano R, Kubo Y, Inaba A (2004b) Coordinated expression patterns of genes encoding cell wall modifying enzymes during ripening in distinct anatomical tissue regions of the fig (Ficus carica L.) fruit. Postharvest Biol Technol 32:253–261

    Article  CAS  Google Scholar 

  • Owino WO, Manabe Y, Mathooko FM, Kubo Y, Inaba A (2006) Regulatory mechanisms of ethylene biosynthesis in response to various stimuli during maturation and ripening in fig fruit (Ficus carica L.). Plant Physiol Biochem 44:335–342

    Article  CAS  PubMed  Google Scholar 

  • Piechulla B, Pichersky E, Cashmore AR, Gruissem W (1986) Expression of nuclear and plastid genes for photosynthesis-specific proteins during tomato fruit-development and ripening. Plant Mol Biol 7:367–376

    Article  CAS  PubMed  Google Scholar 

  • Rastegar S, Rahemi M, Baghizadeh A, Gholami M (2012) Enzyme activity and biochemical changes of three date palm cultivars with different softening pattern during ripening. Food Chem 134:1279–1286

    Article  CAS  PubMed  Google Scholar 

  • Rugkong A, McQuinn R, Giovannoni JJ, Rose JKC, Watkins CB (2011) Expression of ripening-related genes in cold-stored tomato fruit. Postharvest Biol Technol 61:1–14

    Article  CAS  Google Scholar 

  • Saladie M et al (2007) A reevaluation of the key factors that influence tomato fruit softening and integrity. Plant Physiol 144:1012–1028

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schwab W, Davidovich-Rikanati R, Lewinsohn E (2008) Biosynthesis of plant-derived flavor compounds. Plant J 54:712–732

    Article  CAS  PubMed  Google Scholar 

  • Seymour GB et al (2011) A SEPALLATA gene is involved in the development and ripening of strawberry (Fragaria x ananassa Duch.) fruit, a non-climacteric tissue. J Exp Bot 62:1179–1188

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shamir R et al (2005) EXPANDER–an integrative program suite for microarray data analysis. BMC Bioinforma 6:232

    Article  Google Scholar 

  • Sozzi GO, Abrajan-Villasenor MA, Trinchero GD, Fraschina AA (2005) Postharvest response of ‘Brown Turkey’ figs (Ficus carica L.) to the inhibition of ethylene perception. J Sci Food Agric 85:2503–2508

    Article  CAS  Google Scholar 

  • Su F, Hu J, Zhang Q, Luo Z (2012) Isolation and characterization of a basic helix-loop-helix transcription factor gene potentially involved in proanthocyanidin biosynthesis regulation in persimmon (Diospyros kaki Thunb.). Sci Hortic 136:115–121

    Article  CAS  Google Scholar 

  • Sweetman C, Wong DCJ, Ford CM, Drew DP (2012) Transcriptome analysis at four developmental stages of grape berry (Vitis vinifera cv. ‘Shiraz’) provides insights into regulated and coordinated gene expression. BMC Genomics 13

  • Tadiello A et al (2009) A PLENA-like gene of peach is involved in carpel formation and subsequent transformation into a fleshy fruit. J Exp Bot 60:651–661

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vrebalov J et al (2002) A MADS-box gene necessary for fruit ripening at the tomato ripening-inhibitor (rin) locus. Science 296:343–346

    Article  CAS  PubMed  Google Scholar 

  • Vrebalov J, Chung M, McQuinn R, Giovannoni J (2009) Fleshy fruit expansion and ripening are regulated by the tomato MADS-box transcription factor TAGL1. Plant Biol (Rockville) 2009:366

    Google Scholar 

  • Wang X, Peng F, Li M, Yang L, Li G (2012) Expression of a heterologous SnRK1 in tomato increases carbon assimilation, nitrogen uptake and modifies fruit development. J Plant Physiol 169:1173–1182

    Article  CAS  PubMed  Google Scholar 

  • Yadav P, Kumar S, Jain V, Malhotra SP (2012) Cell wall metabolism of two varieties of ber (Ziziphus mauritiana Lam.) fruit during ripening. Food Technol Biotechnol 50:467–472

    CAS  Google Scholar 

  • Yin Y et al (2012) High-throughput sequencing-based gene profiling on multi-staged fruit development of date palm (Phoenix dactylifera, L.). Plant Mol Biol 78:617–626

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang H et al (2011) PlantTFDB 2.0: update and improvement of the comprehensive plant transcription factor database. Nucleic Acids Res 39:D1114–D1117

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Dr. Vered Caspi, Inbar Plaschkes, and Guy Rapaport of the Bioinformatics Core Facility, The National Institute for Biotechnology in the Negev, Ben-Gurion University, Beer-Sheva, Israel, for providing us with computer services and support for the annotation analysis. We also thank Dr. Amir Sherman, Dr. Ron Ophir, Dr. Nurit Katzir, and Dr. Shiri Freilich for their helpful advice. This work was supported by a grant from The Ministry of Agriculture, Israel.

Data archiving statement

The sequence data generated in this study have been deposited at NCBI in the Sequence Read Archive (SRA) under the accession numbers SRR1174869- SRR1174872 (sample 1–4, respectively). The Transcriptome Shotgun Assembly project has been deposited at DDBJ/EMBL/GenBank under the accession GAYT00000000. The version described in this paper is the first version, GAYT01000000. Sequences of cDNA isolates of Isogroups 1917, 4355, 7031, 10006, 9067, 1334, 5572, and 139 have been deposited at NCBI under the accessions KJ506152- KJ506159 (FcMADS1-8, respectively).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moshe A. Flaishman.

Additional information

Communicated by J.L. Wegrzyn

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 465 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Freiman, Z.E., Doron-Faigenboim, A., Dasmohapatra, R. et al. High-throughput sequencing analysis of common fig (Ficus carica L.) transcriptome during fruit ripening. Tree Genetics & Genomes 10, 923–935 (2014). https://doi.org/10.1007/s11295-014-0732-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11295-014-0732-2

Keywords

Navigation