Skip to main content
Log in

Characterization of melanin pigment produced by Aspergillus nidulans

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Although most of the Ascomycetes present DHN-melanin, some reports suggest that A. nidulans does not produce this type of melanin. In this study, we analyzed the pigment extracted from highly melanized strains (MEL1 and MEL2) of Aspergillus nidulans to determine the type of melanin present in this fungus. Our results showed that the pigment produced by MEL1 and MEL2 mutants possesses physical and chemical properties and UV- and IR-spectra very similar to synthetic DOPA-melanin. The characterization of this pigment in terms of its degradation products indicated the presence of indolic units, which were also found in synthetic DOPA-melanin. The analyses of the elemental composition showed that the pigment extracted from these mutants has a high percentage of nitrogen and, therefore, it cannot be DHN-melanin, which presents only trace of nitrogen. This observation was confirmed in the test with tricyclazole because this inhibitor of DHN-melanin biosynthesis did not suppress pigment production in the MEL1 and MEL2 strains. On the other hand, in a medium containing tropolone, an inhibitor of DOPA-melanin biosynthesis, the dark pigmentation of the colonies was not observed indicating that this compound inhibited melanin production in these strains. Taken together, the results obtained in this study indicate that melanin produced by these mutants is DOPA type, representing the first report on characterization of this type of melanin in A. nidulans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

DOPA:

3,4-dihydroxyphenylalanine

DHN:

1,8-dihydroxynaphthalene

GDHB:

Glutaminyl-3,4-dihydroxybenzene

UV:

Ultraviolet

IR:

Infrared

ESR:

Electron spin resonance

References

  • Bell AA, Wheeler MH (1986) Biosyntesis and functions of fungal melanins. Annu Rev Phytopathol 24:411–451. doi:10.1146/annurev.py.24.090186.002211

    Article  CAS  Google Scholar 

  • Bertazzo A, Costa CVL, Alegrin G, Schiavolin M, Favretto D, Traldi P (1999) Enzymatic oligomerization of tyrosine by tyrosinase and peroxidase studied by matrix assisted laser desorption/ionization mass spectrometry. Rapid Commun Mass Spectrom 13:542–547. doi:10.1002/(SICI)1097-0231(19990330)13:6

    Article  CAS  Google Scholar 

  • Bilinska B (1996) Progress of infrared investigations of melanin structures. Spectrochim Acta Part A 52:1157–1162. doi:10.1016/0584-8539(96)01691-1

    Article  Google Scholar 

  • Booner TG, Duncan A (1962) Infra-red spectra of some melanins. Nature 194:1078–1079. doi:10.1038/1941078a0

    Article  Google Scholar 

  • Bridelli MG, Tampellini D, Zecca L (1999) The structure of neuromelanin and its iron binding site studied by infrared spectroscopy. FEBS Lett 457:18–22. doi:10.1016/S0014-5793(99)01001-7

    Article  CAS  Google Scholar 

  • Bull A (1970) Chemical composition of wild-type and mutant Aspergillus nidulans cell walls. The nature of polysaccharide and melanin constituents. J Gen Microbiol 63:75–94. doi:10.1099/00221287-63-1-75

    CAS  Google Scholar 

  • Bull AT, Carter BL (1973) The isolation of tyrosinase from Aspergillus nidulans, its kinetic and molecular properties and some consideration of its activity in vivo. J Gen Microbiol 75:51–73

    Google Scholar 

  • Butler MJ, Day AW (1998) Fungal melanins: a review. Can J Microbiol 44:1115–1136. doi:10.1139/cjm-44-12-1115

    Article  CAS  Google Scholar 

  • Casadevall A, Rosas AL, Nosanchuk JD (2000) Melanin and virulence in Cryptococcus neoformans. Curr Opin Microbiol 3:354–358. doi:10.1016/S1369-5274(00)00103-X

    Article  CAS  Google Scholar 

  • Chaskes S, Tyndall RL (1975) Pigment production by Cryptococcus neoformans from para- and ortho-diphenols: effect of the nitrogen source. J Clin Microbiol 1:509–514

    CAS  Google Scholar 

  • Cove DJ (1966) The induction and repression of nitrate reductase in the fungus Aspergillus nidulans. Biochim Biophys Acta 113:51–56. doi:10.1016/S0926-6593(66)80120-0

    CAS  Google Scholar 

  • Crippa PR, Horak V, Prota G, Svoronos P, Wolfram L (1989) Chemistry of melanins. In: Brossi A (ed) Alkaloids. Academic Press, San Diego, pp 253–323

    Google Scholar 

  • Dadachova E, Bryan RA, Huang X, Moadel T, Schweitzer AD, Aisen P, Nosanchuk JD, Casadevall A (2007) Ionizing radiation changes the electronic properties of melanin and enhances the growth of melanized fungi. PLoS ONE 2(5):e457. doi:10.1371/journal.pone.0000457

    Article  Google Scholar 

  • Duff GA, Roberts JE, Foster N (1988) Analysis of the structure of synthetic and natural melanins by solid-phase NMR. Biochemistry 27:7112–7116. doi:10.1021/bi00418a067

    Article  CAS  Google Scholar 

  • Ellis DH, Griffiths DA (1974) The location and analysis of melanins in the cell walls of some soil fungi. Can J Microbiol 20:1379–1386. doi:10.1139/m74-212

    Article  CAS  Google Scholar 

  • Enochs WS, Nilges MJ, Swartz HM (1993) A standardized test for the identification and characterization of melanins using electron paramagnetic resonance (EPR) spectroscopy. Pigment Cell Res 6(2):91–99. doi:10.1111/j.1600-0749.1993.tb00587.x

    Article  CAS  Google Scholar 

  • Filip Z, Haider K, Beutelspacher H, Martin JP (1974) Comparison of IR spectra from melanins of microscopic soil fungi, humic acids and model phenol polymers. Geoderma 11:37–52. doi:10.1016/0016-7061(74)90005-6

    Article  CAS  Google Scholar 

  • Fogarty RV, Tobim JM (1996) Fungal melanins and their interactions with metals. Enzyme Microb Technol 19:311–317. doi:10.1016/0141-0229(96)00002-6

    Article  CAS  Google Scholar 

  • Gadd GM (1982) Effects of media composition and light on colony differentiation and melanin synthesis in Microdochium bolleyi. Trans Brit Mycol Soc 78:115–122. doi:10.1016/S0007-1536(82)80083-1

    Article  CAS  Google Scholar 

  • Garcia-Rivera J, Casadevall A (2001) Melanization of Cryptococcus neoformans reduces its susceptibility to the antimicrobial effects of silver nitrate. Med Mycol 39:353–357. doi:10.1080/714031043

    CAS  Google Scholar 

  • Gómez B, Nosanchuk JD (2003) Melanin and fungi. Curr Opin Infec Dis 16:91–96

    Article  Google Scholar 

  • Gonçalves RCR, Pombeiro-Sponchiado SR (2005) Antioxidant activity of the melanin pigment extracted from Aspergillus nidulans. Biol Pharm Bull 28:1129–1131. doi:10.1248/bpb.28.1129

    Article  Google Scholar 

  • Harki E, Talou T, Dargent R (1997) Purification, characterisation and analysis of melanin extracted from Tuber melanosporum Vitt. Food Chem 58(1–2):69–73. doi:10.1016/S0308-8146(96)00215-4

    Article  CAS  Google Scholar 

  • Henson JM, Butler MJ, Day AW (1999) The dark side of the mycelium: melanins of phytopathogenic fungi. Annu Rev Phytopathol 37:447–471. doi:10.1146/annurev.phyto.37.1.447

    Article  CAS  Google Scholar 

  • Jacobson ES (2000) Pathogenic roles for fungal melanins. Clin Microbiol Rev 13:708–717. doi:10.1128/CMR.13.4.708-717.2000

    Article  CAS  Google Scholar 

  • Jacobson E, Hove E, Emery HS (1995) Antioxidant function of melanin in black fungi. Infect Immun 63:4944–4945

    CAS  Google Scholar 

  • Karkowska-Kuleta J, Rapala-Kozik M, Kozik A (2009) Fungi pathogenic to humans: molecular bases of virulence of Candida albicans, Cryptococcus neoformans and Aspergillus fumigates. Acta Biochim Pol 56:211–224

    CAS  Google Scholar 

  • Langfelder K, Streibel M, Jahn B, Haase G, Brakhage AA (2003) Biosynthesis of fungal melanins and their importance for human pathogenic fungi. Fungal Genet Biol 38:143–158. doi:10.1016/S1087-1845(02)00526-1

    Article  CAS  Google Scholar 

  • Martinelli SD (1994) Aspergillus nidulans as an experimental organism. In: Martinelli SD, Kinghorn JR (eds) Aspergillus nidulans: 50 years on. Progress in industrial microbiology, vol 29. Elsevier Science Publishers, Amsterdam, pp 33–58

    Google Scholar 

  • Martinelli SD, Bainbridge BW (1974) Phenoloxidases of Aspergillus nidulans. Trans Br Mycol Soc 63:361–370. doi:10.1016/S0007-1536(74)80181-6

    Article  Google Scholar 

  • Nosanchuk JD, Casadevall A (2003) Budding of melanized Cryptococcus neoformans in the presence or absence of L-dopa. Microbiol 149:1945–1951. doi:10.1099/mic.0.26333-0

    Article  CAS  Google Scholar 

  • Paim S, Linhares LF, Mangrich AS, Martim JP (1990) Characterization of fungal melanins and soil humic acids by chemical analysis and infrared spectroscopy. Biol Fertil Soils 10:72–76. doi:10.1007/BF00336128

    CAS  Google Scholar 

  • Piattelli M, Fattorusso E, Magno S, Nicolaus RA (1963) Ustilago melanin, a naturally occurring catechol melanin. Tetrahedron Lett 4(15):997–998. doi:10.1016/S0040-4039(01)90760-9

    Article  Google Scholar 

  • Plonka PM, Grabacka M (2006) Melanin synthesis in microorganisms—biotechnological and medical aspects. Acta Biochim Polonica 53(3):429–443

    CAS  Google Scholar 

  • Pombeiro SRC (1991) Control of gene expression of the transport and metabolism of sources of nitrogen in Aspergillus nidulans: influence of the concentration nitrite, of the pH and of the citrate presence. Doctor thesis. University of São Paulo, Ribeirão Preto

  • Rowley BI, Pirt SJ (1972) Melanin production by Aspergillus nidulans in batch and chemostat cultures. J Gen Microbiol 72(3):553–563. doi:10.1099/00221287-72-3-553

    CAS  Google Scholar 

  • Saiz-Jimenez C (1995) Microbial melanins in stone monuments. Sci Total Environ 167:273–286. doi:10.1016/0048-9697(95)04588-R

    Article  CAS  Google Scholar 

  • Sava VM, Galkin BN, Hong MY, Yang PC, Huang GS (2001) A novel melanin-like pigment derived from black tea leaves with immuno-stimulating activity. Food Res Intern 34(4):337–343. doi:10.1016/S0963-9969(00)00173-3

    Article  CAS  Google Scholar 

  • Schmaler-Ripcke J, Sugareva V, Gebhardt P, Winkler R, Kniemeyer O, Heinekamp T, Brakhage AA (2009) Production of pyomelanin, a second type of melanin, via the tyrosine degradation pathway in Aspergillus fumigatus. App Environ Microbiol 75(2):493–503. doi:10.1128/AEM.02077-08

    Article  CAS  Google Scholar 

  • Schnitzler N, Peltroche-Llacsahuanga H, Bestier N, Zündorf J, Lütticken R, Haase G (1999) Effect of melanin and carotenoids of Exophiala (Wangiella) dermatidis on phagocytosis, oxidative burst, and killing by human neutrophils. Infect Immun 67:94–101

    CAS  Google Scholar 

  • Senesi N, Miano TM, Martin JP (1987) Elemental, funcional infrared and free radical characterization of humic acid-type fungal polymers (melanins). Biol Fertil Soils 5:120–125. doi:10.1007/BF00257646

    Article  CAS  Google Scholar 

  • Singaravelan N, Grishkan I, Beharav A, Wakamatsu K, Ito S, Nevo E (2008) Adaptive melanin response of the soil fungus Aspergillus niger to UV radiation stress at “evolution canyon”, Mount Carmel, Israel. PLoS ONE 3(8):e 2993. doi:10.1371/journal.pone.0002993

    Article  Google Scholar 

  • Spiegel-Adolf M (1937) Studies on melanins. I. Photosynthetic melanins. Biochem J 31:1303–1310

    CAS  Google Scholar 

  • Stussi H, Rast DM (1981) The biosynthesis and possible function of γ-glutaminyl-4-hydroxybenzene in Agaricus bisporus. Phytochemistry 20:2347–2352. doi:10.1016/S0031-9422(00)82663-1

    Article  Google Scholar 

  • Thomas M (1955) Melanins. In: Paech K, Tracey MV (eds) Modern methods of plant analysis. Springer, Berlin, pp 142–196

    Google Scholar 

  • Tran ML, Powell BJ, Meredith P (2006) Chemical and structural disorder in eumelanins: a possible explanation for broadband absorbance. Biophys J 90:743–752. doi:10.1529/biophysj.105.069096

    Article  CAS  Google Scholar 

  • Tsai HF, Fujii I, Watanabe A, Wheeler MH, Chang YC, Yasuoka Y (2001) Pentaketide melanin biosynthesis in Aspergillus fumigatus requires chain-length shortening of a heptaketide precursor. J Biol Chem 276:29292–29298. doi:10.1074/jbc.M101998200

    Article  CAS  Google Scholar 

  • Wang Y, Casadevall A (1994) Susceptibility of melanized and nonmelanized Cryptococcus neoformans to nitrogen- and oxygen-derived oxidants. Infect Immun 62:3004–3007

    CAS  Google Scholar 

  • Watanabe A, Fujii I, Sankawa U, Mayorga M, Timberlake WE, Ebizuka Y (1999) Re-identification of Aspergillus nidulans wA gene to code for a polyketide synthase of naphthopyrone. Tetrahedron Lett 40:91–94. doi:10.1016/S0040-4039(98)80027-0

    Article  CAS  Google Scholar 

  • Wheeler MH, Greenblatt GA (1988) The inhibition of melanin biosynthesis reactions in Pyricularia oryzae by compounds the prevent rice blast disease. Expt Mycol 12:151–160. doi:10.1016/0147-5975(88)90004-7

    Article  CAS  Google Scholar 

  • Wheeler MH, Klich MA (1995) The effects of tricyclazole, pyroquilon, phthalide, and related fungicides on the production of conidial wall pigments by Penicillium and Aspergillus species. Pestic Biochem Physiol 52:125–136

    Article  CAS  Google Scholar 

  • Wilczok T, Bilinska B, Buszman E, Kopera M (1984) Spectroscopic studies of chemically modified synthetic melanins. Arch Biochem Biophys 231(2):257–262. doi:10.1016/0003-9861(84)90386-2

    Article  CAS  Google Scholar 

  • Wu Y, Shan L, Yang S, Aimin Ma (2008) Identification and antioxidant activity of melanin isolated from Hypoxylon archeri, a companion fungus of Tremella fuciformis. J Basic Microbiol 48:217–221. doi:10.1002/jobm.200700366

    Article  CAS  Google Scholar 

  • Youngchim S, Morris-Jones R, Hay RJ, Hamilton AJ (2004) Production of melanin by Aspergillus fumigatus. J Med Microbiol 53:175–181. doi:10.1099/jmm.0.05421-0

    Article  CAS  Google Scholar 

  • Zhadanova NN, Borisyuk LG, Artzatbanov VY (1990) Ocurrence of the K type of life strategy in some melanin- containing fungi under experimental conditions. Folia Microbiol 35:423–430. doi:10.1007/BF02821411

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Programa de Apoio a Pós-graduação (PROAP-UNESP) and Coordenação de Aperfeiçoamento Pessoal de Nível Superior (CAPES). We thank the group of molecular biophysics “Sérgio Mascarenhas” from the University of São Paulo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. R. Pombeiro-Sponchiado.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gonçalves, R.C.R., Lisboa, H.C.F. & Pombeiro-Sponchiado, S.R. Characterization of melanin pigment produced by Aspergillus nidulans . World J Microbiol Biotechnol 28, 1467–1474 (2012). https://doi.org/10.1007/s11274-011-0948-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-011-0948-3

Keywords

Navigation