Skip to main content
Log in

Quantum partial search for uneven distribution of multiple target items

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum partial search algorithm is an approximate search. It aims to find a target block (which has the target items). It runs a little faster than full Grover search. In this paper, we consider quantum partial search algorithm for multiple target items unevenly distributed in a database (target blocks have different number of target items). The algorithm we describe can locate one of the target blocks. Efficiency of the algorithm is measured by number of queries to the oracle. We optimize the algorithm in order to improve efficiency. By perturbation method, we find that the algorithm runs the fastest when target items are evenly distributed in database.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, ACM (1996)

  2. Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79, 325 (1997)

    Article  ADS  Google Scholar 

  3. Ambainis, A.: Quantum search algorithms. ACM SIGACT News 35, 22–35 (2004)

    Article  Google Scholar 

  4. Giri, P.R., Korepin, V.E.: A review on quantum search algorithms. Quantum Inf. Process. 16, 315 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  6. Chuang, I.L., Gershenfeld, N., Kubinec, M.: Experimental implementation of fast quantum searching. Phys. Rev. Lett. 80, 3408 (1998)

    Article  ADS  Google Scholar 

  7. Brassard, G., Høyer, P., Tapp, A.: Quantum counting. In: Automata, Languages and Programming, 820–831 (1998)

  8. Brassard, G., Høyer, P., Mosca, M., Tapp, A.: Quantum amplitude amplification and estimation. Contemp. Math. 305, 53–74 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cerf, N.J., Grover, L.K., Williams, C.P.: Nested quantum search and NP-hard problems. Appl. Algebra Eng. Commun. Comput. 10, 311–338 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Aïmeur, E., Brassard, G., Gambs, S.: Quantum speed-up for unsupervised learning. Mach. Learn. 90, 261–287 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P., Wiebe, N., Lloyd, S.: Quantum machine learning. Nature 549, 195 (2017)

    Article  ADS  Google Scholar 

  12. Bennett, C.H., Bernstein, E., Brassard, G., Vazirani, U.: Strengths and weaknesses of quantum computing. SIAM J. Comput. 26, 1510–1523 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  13. Zalka, C.: Grovers quantum searching algorithm is optimal. Phys. Rev. A 60, 2746 (1999)

    Article  ADS  Google Scholar 

  14. Farhi, E., Gutmann, S.: Analog analogue of a digital quantum computation. Phys. Rev. A 57, 2403 (1998)

    Article  ADS  Google Scholar 

  15. Roland, J., Cerf, N.J.: Quantum search by local adiabatic evolution. Phys. Rev. A 65, 042308 (2002)

    Article  ADS  Google Scholar 

  16. Shenvi, N., Kempe, J., Whaley, K.B.: Quantum random-walk search algorithm. Phys. Rev. A 67, 052307 (2003)

    Article  ADS  Google Scholar 

  17. Ambainis, A., Kempe, J., Rivosh, A.: Coins make quantum walks faster. In: Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms, 1099-1108 (2005)

  18. Grover, L.K.. Radhakrishnan, J.: Is partial quantum search of a database any easier? In: Proceedings of the Seventeenth Annual ACM Symposium on Parallelism in Algorithms and Architectures, ACM (2005)

  19. Heiligman, M.: Finding matches between two databases on a quantum computer. arXiv preprint quant-ph/0006136 (2000)

  20. Korepin, V.E., Grover, L.K.: Simple algorithm for partial quantum search. Quantum Inf. Process. 5, 5–10 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Korepin, V.E.: Optimization of partial search. J. Phys. A: Math. Gene. 38, 731 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Choi, B.S., Walker, T.A., Braunstein, S.L.: Sure success partial search. Quantum Inf. Process. 6, 1–8 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Korepin, V.E., Liao, J.: Quest for fast partial search algorithm. Quantum Inf. Process. 5, 209–226 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Korepin, V.E., Xu, Y.: Hierarchical quantum search. Int. J. Mod. Phys. B 21, 5187–5205 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Korepin, V.E., Xu, Y.: Quantum search algorithms. Int. J. Mod. Phys. B 23, 5727–5758 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Korepin, V.E., Vallilo, B.C.: Group theoretical formulation of a quantum partial search algorithm. Prog. Theor. Phys. 116, 783–793 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Boyer, M., Brassard, G., Høyer, P., Tapp, A.: Tight bounds on quantum searching, arXiv preprint quant-ph/9605034 (1996)

  28. Choi, B.-S., Korepin, V.E.: Quantum partial search of a database with several target items. Quantum Inf. Process. 6, 243–254 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  29. Zhong, P.-C., Bao, W.-S., Wei, Y.: Quantum partial searching algorithm of a database with several target items. Chin. Phys. Lett. 26, 020301 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun Zhang.

Appendix: The proof of equation (66)

Appendix: The proof of equation (66)

The optimal value of \(\alpha \) and \(\eta \) (31) for even distribution of target items is denoted as \(\eta _0\) and \(\alpha _0\) (41). Their values can be rewritten as

$$\begin{aligned}&\tan \left( 2\eta _0\sqrt{\frac{z}{K}}\right) =\frac{\sqrt{3\beta -4\beta ^2}}{1-2\beta },\quad \quad \cos \left( 2\alpha _0\sqrt{{{\bar{\tau }}}}\right) =\frac{1-2\beta }{2(1-\beta )},\nonumber \\&\sin \left( 2\alpha _0\sqrt{{{\bar{\tau }}}}\right) =\frac{\sqrt{3-4\beta }}{2(1-\beta )} \end{aligned}$$
(75)

with \(\beta =t/K\). On the other hand, the approximate Eqs. (49) and (61) can be reformulated as

$$\begin{aligned} \sum _{i=1}^t\sqrt{\tau _i}\sin \left( 2\alpha _K\sqrt{\tau _i}\right)&=t\sqrt{{{\bar{\tau }}}}\sin \left( 2\alpha _0\sqrt{{{\bar{\tau }}}}\right) +P\delta ^2(\tau ); \end{aligned}$$
(76)
$$\begin{aligned} \sum _{i=1}^t \cos \left( 2\alpha _K\sqrt{\tau _i}\right)&=t\cos \left( 2\alpha _0\sqrt{{{\bar{\tau }}}}\right) +Q\delta ^2(\tau ) \end{aligned}$$
(77)

The coefficient P is found as

$$\begin{aligned} P= & {} -\frac{1}{2} \sin \left( 2\alpha _0\sqrt{{{\bar{\tau }}}}\right) \frac{t\alpha ^2_0}{\sqrt{{{\bar{\tau }}}}}+\frac{1}{4} \cos \left( 2\alpha _0\sqrt{{{\bar{\tau }}}}\right) \frac{t\alpha _0}{{{\bar{\tau }}}}\nonumber \\&\quad -\,\frac{1}{8}\sin \left( 2\alpha _0\sqrt{{{\bar{\tau }}}}\right) \frac{t}{{{\bar{\tau }}}\sqrt{{{\bar{\tau }}}}} +2t{{\bar{\tau }}}\cos \left( 2\alpha _0\sqrt{{{\bar{\tau }}}}\right) \frac{\Delta \alpha _K}{\delta ^2(\tau )} \end{aligned}$$
(78)

Substituting \(\Delta \alpha _K\) (63) and the optimal value \(\alpha _0\) (75) into above relation, after some algebra, coefficient P equals to

$$\begin{aligned} P=-\frac{(1-\beta )}{\sqrt{3-4\beta }}\frac{t\alpha _0^2}{\sqrt{{{\bar{\tau }}}}} -\frac{(1-2\beta )(1+\beta )}{4(1-\beta )^2}\frac{t\alpha _0}{{{\bar{\tau }}}} +\frac{\sqrt{3-4\beta }}{16(1-\beta )}\frac{t}{{{\bar{\tau }}}\sqrt{{{\bar{\tau }}}}} \end{aligned}$$
(79)

Similar, the coefficient Q in (77) has the expression

$$\begin{aligned} Q=\frac{\sqrt{3-4\beta }}{2(1-\beta )^2}\frac{t\alpha _0}{{{\bar{\tau }}}\sqrt{{{\bar{\tau }}}}} \end{aligned}$$
(80)

With the help of approximation Eqs. (76) and (77), the right-hand side of Eq. (64) in first order of \(\delta ^2(\tau )\) becomes

$$\begin{aligned} \text {RHS of }(64)= & {} \frac{2\sqrt{K} \left( t\sqrt{{{\bar{\tau }}}}\sin \left( 2\alpha _0\sqrt{{{\bar{\tau }}}}\right) +P\delta ^2(\tau ) \right) }{\sqrt{z} \left( 2t\cos \left( 2\alpha _0\sqrt{{{\bar{\tau }}}}\right) +2Q\delta ^2(\tau )+K-2t\right) }\nonumber \\= & {} \frac{2t\sqrt{K{{\bar{\tau }}}}\sin \left( 2\alpha _0\sqrt{{{\bar{\tau }}}}\right) }{\sqrt{z}\left( 2t\cos \left( 2\alpha _0\sqrt{{{\bar{\tau }}}}\right) +K-2t\right) } +\frac{2\sqrt{K}P\delta ^2(\tau )}{\sqrt{z}\left( 2t\cos \left( 2\alpha _0\sqrt{{{\bar{\tau }}}}\right) +K-2t\right) }\nonumber \\&-\,\frac{4t\sqrt{K{{\bar{\tau }}}}\sin \left( 2\alpha _0\sqrt{{{\bar{\tau }}}}\right) Q \delta ^2(\tau )}{\sqrt{z}\left( 2t\cos \left( 2\alpha _0\sqrt{{{\bar{\tau }}}}\right) +K-2t\right) ^2} \end{aligned}$$
(81)

Combining above result with left-hand side of Eq. (64), and using the identity (65), we have the result

$$\begin{aligned}&\left( 1+\tan ^2\left( 2\eta _0\sqrt{\frac{z}{K}}\right) \right) \Delta \eta _K\nonumber \\&\quad = \frac{KP\delta ^2(\tau )}{z\left( 2t\cos \left( 2\alpha _0\sqrt{{{\bar{\tau }}}}\right) +K-2t\right) } -\frac{2tK\sqrt{{{\bar{\tau }}}}\sin \left( 2\alpha _0\sqrt{{{\bar{\tau }}}}\right) A\delta ^2(\tau )}{z\left( 2t\cos \left( 2\alpha _0\sqrt{{{\bar{\tau }}}}\right) +K-2t\right) ^2} \end{aligned}$$
(82)

Note that \(\eta _0\) and \(\alpha _0\) have the expressions (75). Then above equation gives

$$\begin{aligned} \Delta \eta _K =\left( (1-2\beta )\frac{P}{t{{\bar{\tau }}}}-\beta \sqrt{3-4\beta }\frac{Q}{t\sqrt{{{\bar{\tau }}}}}\right) \delta ^2(\tau ) \end{aligned}$$
(83)

Last, substituting coefficient P (79) and Q (80) into above equation, after some algebra, we solve \(\Delta \eta _K\) in first order of \(\delta ^2(\tau )\) explicitly:

$$\begin{aligned} \Delta \eta _{K}= & {} -\left( \frac{(1-\beta )(1-2\beta )}{\sqrt{3-4\beta }}\frac{\alpha _0^2}{{{\bar{\tau }}}\sqrt{{{\bar{\tau }}}}} +\frac{(4\beta ^3-8\beta ^2+3\beta +1)}{4(1-\beta )^2}\frac{\alpha _0}{{{\bar{\tau }}}^2} \right. \nonumber \\&\quad \left. +\,\frac{(1-2\beta )\sqrt{3-4\beta }}{16(1-\beta )}\frac{1}{{{\bar{\tau }}}^2\sqrt{{{\bar{\tau }}}}} \right) \delta ^2(\tau ) \end{aligned}$$
(84)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, K., Korepin, V. Quantum partial search for uneven distribution of multiple target items. Quantum Inf Process 17, 143 (2018). https://doi.org/10.1007/s11128-018-1907-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-1907-9

Keywords

Navigation