Skip to main content
Log in

Analysis of a nonlinear magnetic levitation system vibrations controlled by a time-delayed proportional-derivative controller

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A time-delayed proportional-derivative controller is proposed in this paper to reduce the horizontal vibration of a magnetically levitated system having quadratic and cubic nonlinearities to primary and parametric excitations. Applying multiple scales perturbation technique, a second-order approximate solution is sought to analyze the nonlinear behavior of the system. The effects of the time delay are studied to indicate the stable range of time delays for the best performance. The results are compared with the numerical simulations, and this shows a good verification for the approximate solution and for the control algorithm used in this paper. A comparison with previously published work is included at the end.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

\(y,\dot{y},\ddot{y}\) :

Displacement, velocity and acceleration

\(\mu \) :

Linear damping coefficient

\(\alpha _{2},\alpha _{3}\) :

Quadratic and cubic stiffness nonlinearity parameters

\( f_{j},~f_{jt}\) :

External and modulated excitation force components

\(\Omega \) :

External excitation frequency

\(\Omega _{t},\,{\psi }\) :

Modulated excitation frequencies

\(p,~d \) :

Proportional and derivative gains

\(k_{1},~k_{2},~k_{3}\) :

Constants dependent on the applied magnetic forces

\(\varepsilon \) :

Small perturbation parameter

\(\sigma _{1},~\sigma _{2},\sigma _{t}\) :

Detuning parameters

\(\tau _{1},~\tau _{2}\) :

Time delays

References

  1. Jo, H., Yabuno, H.: Amplitude reduction of primary resonance of nonlinear oscillator by a dynamic vibration absorber using nonlinear coupling. Nonlinear Dyn. 55, 67–78 (2009)

    Article  MATH  Google Scholar 

  2. Jo, H., Yabuno, H.: Amplitude reduction of parametric resonance by dynamic vibration absorber based on quadratic nonlinear coupling. J. Sound Vib. 329, 2205–2217 (2010)

    Article  Google Scholar 

  3. Kamel, M., Kandil, A., El-Ganaini, W.A., Eissa, M.: Active vibration control of a nonlinear magnetic levitation system via Nonlinear Saturation Controller (NSC). Nonlinear Dyn. (2014). doi:10.1007/s11071-014-1323-3

    Google Scholar 

  4. Bauomy H. S.: Active vibration control of a dynamical system via negative linear velocity feedback. Nonlinear Dyn. doi:10.1007/s11071-014-1306-4.

  5. El-Ganaini, W.A., Saeed, N.A., Eissa, M.: Positive position feedback controller (PPF) for suppression of nonlinear system vibration. Nonlinear Dyn. 72, 517–537 (2013)

    Article  MathSciNet  Google Scholar 

  6. Eissa, M., Sayed, M.: A comparison between active and passive vibration control of non-linear simple pendulum, Part I: transversally tuned absorber and negative \(G\,\dot{\varphi }^{n} \) feedback. Math. Comput. Appl. 11(2), 137–149 (2006)

    MathSciNet  MATH  Google Scholar 

  7. Eissa, M., Sayed, M.: A comparison between active and passive vibration control of non-linear simple pendulum, Part II: Longitudinal tuned absorber and negative \(G \ddot{\varphi }\) and \({G\,\varphi }^{n}\) feedback. Math. Comput. Appl. 11(2), 151–162 (2006)

  8. Eissa, M., Bauomy, H.S., Amer, Y.A.: Active control of an aircraft tail subject to harmonic excitation. Acta Mech. Sin. 23, 451–462 (2007)

    Article  MATH  Google Scholar 

  9. Zhao, Y.Y., Xu, J.: Effects of delayed feedback control on nonlinear vibration absorber system. J. Sound Vib. 308, 212–230 (2007)

    Article  Google Scholar 

  10. Xu, J., Chung, K.W., Zhao, Y.Y.: Delayed saturation controller for vibration suppression in a stainless-steel beam. Nonlinear Dyn. 62, 177–193 (2010)

    Article  MATH  Google Scholar 

  11. Zhao, Y.Y., Xu, J.: Using the delayed feedback control and saturation control to suppress the vibration of the dynamical system. Nonlinear Dyn. 67, 735–753 (2012)

    Article  MATH  Google Scholar 

  12. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (1995)

    Book  Google Scholar 

Download references

Acknowledgments

We wish to thank Prof. Hiroshi Yabuno and Prof. Hoonhee Jo, as we modified their proposed model reported in refs. [1, 2] to be the basic model for the present work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kandil.

Appendix

Appendix

$$\begin{aligned} \zeta _{1}&= -\frac{5}{16}\alpha _{2}^{2} \alpha _{3} +\frac{9}{64}\alpha _{3}^{2} +\frac{25}{144}\alpha _{2}^4 \\ \zeta _{2}&= \frac{5}{6}\sigma _{1} \alpha _{2}^{2} -\frac{3}{4}\sigma _{1} \alpha _{3} -\frac{5}{12}p\alpha _{2}^{2} \cos \tau _{1}\\&+\,\frac{3}{8}d\alpha _{3} \sin \tau _{2} -\frac{5}{12}d\alpha _{2}^{2} \sin \tau _{2} +\frac{3}{8}p\alpha _{3} \cos \tau _{1} \\ \zeta _{3}&= \sigma _{1} ^{2}+\mu ^{2}+\frac{1}{4}p^{2}+\frac{1}{4}d^{2}-\frac{1}{2}pd\sin (\tau _{1} -\tau _{2} )\\&-\,\mu p\sin \tau _{1} +\mu d\cos \tau _{2} \\&-\,\sigma _{1} d\sin \tau _{2} -\sigma _{1} p\cos \tau _{1} \\ \\ \zeta _4&= -(\frac{k_{1} f_{1} }{2}+\frac{f_{1t} }{4})^{2} \\ \delta _{1}&= \frac{\left( {2k_{1} f_{1} \sin \varphi _{0} +f_t \sin \varphi _{0} +4\mu a_{0} -2pa_{0} \sin \tau _{1} +2da_{0} \cos \tau _{2} } \right) }{4a_{0} } \\ \delta _{2}&= \frac{\left( {2k_{1} f_{1} +f_t } \right) }{48a_{0}^{2} }\\&\times \left( {\begin{array}{l} -10\alpha _{2} ^{2}a_{0} ^{3}\cos \varphi _{0} +9\alpha _{3} a_{0} ^{3}\cos \varphi _{0} +6k_{1} f_{1} \cos ^{2}\varphi _{0} \\ \quad +3f_t \cos ^{2}\varphi _{0} +12\mu a_{0} \sin \varphi _{0} -6pa_{0} \sin \tau _{1} \sin \varphi _{0} \\ \quad +6da_{0} \cos \tau _{2} \sin \varphi _{0} \\ \end{array}} \right) \\ \rho _{1}&= \frac{25}{144}\alpha _{2}^4 +\frac{9}{64}\alpha _{3}^{2} -\frac{5}{16}\alpha _{2}^{2} \alpha _{3} \\ \rho _{2}&= \frac{3}{8}p\alpha _{3} \cos \tau _{1} -\frac{5}{12}d\alpha _{2}^{2} \sin \tau _{2} -\frac{3}{8}\sigma _{2} \alpha _{3} \\&-\,\frac{5}{12}p\alpha _{2}^{2} \cos \tau _{1} +\frac{5}{12}\sigma _{2} \alpha _{2}^{2} +\frac{3}{8}d\alpha _{3} \sin \tau _{2} \\ \rho _{3}&= \frac{1}{4}\sigma _{2} ^{2}+\mu ^{2}+\frac{1}{4}p^{2}+\frac{1}{4}d^{2}-\frac{1}{2}pd\sin (\tau _{1} -\tau _{2} )\\&-\,\mu p\sin \tau _{1} +\mu d\cos \tau _{2} \\&-\,\frac{1}{2}\sigma _{2} p\cos \tau _{1} -\frac{1}{2}\sigma _{2} d\sin \tau _{2} -\left[ {\frac{k_{2} f_{1} }{2}-\frac{\alpha _{2} k_{1} f_{1} }{2(1-\Omega ^{2})}} \right] ^{2} \\ \\ \eta _{1}&= \frac{1}{2(1-\Omega ^{2})}\left( {\begin{array}{l} k_{2} f_{1} \sin \varphi _{0} -k_{2} f_{1} \Omega ^{2}\sin \varphi _{0} -\alpha _{2} k_{1} f_{1} \sin \varphi _{0} \\ +2\mu -2\mu \Omega ^{2}-p\sin \tau _{1} +p\Omega ^{2}\sin \tau _{1} +d\cos \tau _{2} \\ -d\Omega ^{2}\cos \tau _{2} \end{array}} \right) \\ \end{aligned}$$
$$\begin{aligned} \eta _{2}&= \frac{k_{2} f_{1} -{k}_{2} f_{1} \Omega ^{2}-\alpha _{2} k_{1} f_{1} }{12(1-\Omega ^{2})^{2}}\left( {\begin{array}{l} -10\alpha _{2} ^{2}a_{0} ^{2}\cos \varphi _{0} +10\alpha _{2} ^{2}\Omega ^{2}a_{0} ^{2}\cos \varphi _{0} +9\alpha _{3} a_{0} ^{2}\cos \varphi _{0} \\ \quad -9\alpha _{3} \Omega ^{2}a_{0} ^{2}\cos \varphi _{0} -12\mu \Omega ^{2}\sin \varphi _{0} -6p\sin \tau _{1} \sin \varphi _{0} \\ \quad +12\mu \sin \varphi _{0} +6p\Omega ^{2}\sin \tau _{1} \sin \varphi _{0} +6d\cos \tau _{2} \sin \varphi _{0} \\ \quad -6d\Omega ^{2}\cos \tau _{2} \sin \varphi _{0} -6k_{2} f_{1} \sin ^{2}\varphi _{0} +6k_{2} f_{1} \Omega ^{2}\sin ^{2}\varphi _{0} \\ \quad +\,6\alpha _{2} k_{1} f_{1} \sin ^{2}\varphi _{0} \\ \end{array}} \right) \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eissa, M., Kandil, A., El-Ganaini, W.A. et al. Analysis of a nonlinear magnetic levitation system vibrations controlled by a time-delayed proportional-derivative controller. Nonlinear Dyn 79, 1217–1233 (2015). https://doi.org/10.1007/s11071-014-1738-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1738-x

Keywords

Navigation