Skip to main content
Log in

Declustering of Clustered Preferential Sampling for Histogram and Semivariogram Inference

  • Published:
Mathematical Geology Aims and scope Submit manuscript

Abstract

Measurements of attributes obtained more as a consequence of business ventures than sampling design frequently result in samplings that are preferential both in location and value, typically in the form of clusters along the pay. Preferential sampling requires preprocessing for the purpose of properly inferring characteristics of the parent population, such as the cumulative distribution and the semivariogram. Consideration of the distance to the nearest neighbor allows preparation of resampled sets that produce comparable results to those from previously proposed methods. A clustered sampling of size 140, taken from an exhaustive sampling, is employed to illustrate this approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bogaert P (1999) On the optimal estimation of the cumulative distribution function in presence of spatial dependence. Math Geol 31(2):213–239

    Google Scholar 

  • Bourgault G (1997) Spatial declustering weights. Math Geol 29(2):277–290

    Google Scholar 

  • Deutsch CV (1989) DECLUS: a FORTRAN 77 program for determining optimum spatial declustering weights. Comput Geosci 15(3):325–332

    Article  Google Scholar 

  • Deutsch CV, Journel AG (1998) GSLIB—Geostatistical software library and user’s guide, 2nd edn. Oxford University Press, New York (384 p)

    Google Scholar 

  • Dirichlet GL (1850) Über die Reduktion der positiven quadratischen Formen mit drei unbestimmten ganzen Zahlen. J Reine Angew Math 40:209–227

    Google Scholar 

  • Dubois G, Saisana M (2002) Optimizing spatial declustering weights—comparison of methods. In: Proceedings of the annual conference of the international association for mathematical geology, Berlin, pp 479–484

  • Emery X, Ortiz JM (2005) Histogram and variogram inference in the multigaussian model. Stoch Environ Res Risk Assess 19(1):48–58

    Article  Google Scholar 

  • Goovaerts P (1997) Geostatistics for natural resources evaluation. Oxford University Press, New York (483 p)

    Google Scholar 

  • Isaacs EH, Srivastava RM (1989) Introduction to applied geostatistics. Oxford University Press, New York (561 p)

    Google Scholar 

  • Journel AG (1983) Nonparametric estimation of spatial distributions. Math Geol 15(3):445–468

    Article  Google Scholar 

  • Olea RA (1999) Geostatistics for engineers and earth scientists. Kluwer Academic, Norwell (303 p)

    Google Scholar 

  • Olea RA (2006) A six-step practical approach to semivariogram modeling. Stoch Environ Res Risk Assess 20(5):307–318

    Article  Google Scholar 

  • Omre H (1984) The variogram and its estimation. In: Verly G, David M, Journel AG, Meréchal A (eds) Geostatistics for natural resources characterization, part 1. Reidel, Dordrecht, pp 107–125

    Google Scholar 

  • Pardo-Igúzquiza E, Dowd CV (2004) Normality test for spatially correlated data. Math Geol 36(6):659–681

    Article  Google Scholar 

  • Pyrcz MJ, Deutsch CV (2003) Declustering and debiasing. Downloaded in January 2007 from http://www.gaa.org.au/pdf/DeclusterDebias-CCG.pdf

  • Richmond A (2002) Two-point declustering for weighting data pairs in experimental variogram calculations. Comput Geosci 28(2):231–241

    Article  Google Scholar 

  • Rivoirard J (2001) Weighted semivariograms. In: Kleingeld, WJ, Krige, DG (eds) Proceedings of the 6th international geostatistics congress, Cape Town, pp 145–155

  • Schofield N (1993) Using the entropy statistic to infer population parameters from spatially clustered sampling. In: Soares A (ed) Geostatistics Tróia’92, vol 1. Kluwer Academic, Dordrecht, pp 109–119

    Google Scholar 

  • Switzer P (1977) Estimation of spatial distributions from point sources with applications to air pollution measurement. In: Proceedings of the 41st ISI session, New Delhi. Bull Int Stat Inst 47(2): 123–137

  • Thiessen AH (1911) Precipitation average for large areas. Monthly Weather Rev 39:1082–1084

    Google Scholar 

  • Voronoi G (1907) Nouvelles applications des paramètres continus à la théorie des formes quadratiques. J Reine Angew Math 133:97–178

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo A. Olea.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olea, R.A. Declustering of Clustered Preferential Sampling for Histogram and Semivariogram Inference. Math Geol 39, 453–467 (2007). https://doi.org/10.1007/s11004-007-9108-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11004-007-9108-6

Keywords

Navigation