Skip to main content
Log in

The Role of PVA Surfactant on Magnetic Properties of MnFe2O4 Nanoparticles Synthesized by Sol-Gel Hydrothermal Method

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

In this research, manganese ferrite (MnFe2O4) nanoparticles (NPs) were synthesized using the sol-gel hydrothermal process through different hydrothermal durations and polyvinyl alcohol (PVA) contents. The synthesized NPs were characterized by X-ray diffraction (XRD), vibrating sample magnetometry (VSM), and field emission scanning electron microscopy (FESEM) techniques. The effect of adding PVA as a surfactant and hydrothermal treatment duration on phase formation, microstructure, and magnetic properties of NPs have been discussed in this article. Rietveld-refined XRD patterns proved formation of magnetite and nonstoichiometric manganese ferrite phases along with MnFe2O4 in samples. The existence of a hematite phase was observed in samples prepared without PVA at the hydrothermal durations of 15 and 20 h, while adding PVA caused the hematite phase to disappear. FESEM images showed that adding PVA caused angular and coarser particles to form. The hysteresis loops of the samples confirmed the ferrimagnetic behavior of some samples while others presented superparamagnetic characteristics depending on their processing conditions. The saturation magnetization (Ms) and magnetic coercivity (Hc) values of NPs varied between 38 and 64 emu/g and 15–85 Oe, respectively. Addition of PVA with the average hydrothermal duration of 7.5 h provides the sample with the highest Ms (equal to 64 emu/g), which is mainly composed of MnFe2O4, Mn1.03Fe1.97O4, and Fe3O4. On the other hand, the sample P10 prepared with PVA addition at the hydrothermal treatment duration of 10 h presented the highest value of MnFe2O4 according to the Rietveld refinement results of XRD patterns performed by Maud program.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gaudon, M., Pailhé, N., Wattiaux, A., Demourgues, A.: Structural defects in AFe2O4 (A= Zn, Mg) spinels. Mater. Res. Bull. 44(3), 479–484 (2009)

    Google Scholar 

  2. Kadam, R., Biradar, A., Mane, M., Shirsath, S.E.: Sol-gel auto-combustion synthesis of Li3xMnFe2− xO4 and their characterizations. J. Appl. Phys. 112(4), 043902 (2012)

    ADS  Google Scholar 

  3. Gorter, E.W.: Saturation magnetization and crystal chemistry of ferrimagnetic oxides. I. II. Theory of ferrimagnetism. Philips Res. Rep. 9(295-320), 321–365 (1954)

    Google Scholar 

  4. Lu, J., Ma, S., Sun, J., Xia, C., Liu, C., Wang, Z., Zhao, X., Gao, F., Gong, Q., Song, B.: Manganese ferrite nanoparticle micellar nanocomposites as MRI contrast agent for liver imaging. Biomaterials. 30(15), 2919–2928 (2009)

    Google Scholar 

  5. Arulmurugan, R., Jeyadevan, B., Vaidyanathan, G., Sendhilnathan, S.: Effect of zinc substitution on Co–Zn and Mn–Zn ferrite nanoparticles prepared by co-precipitation. J. Magn. Magn. Mater. 288, 470–477 (2005)

    ADS  Google Scholar 

  6. Hamdeh, H.H., Ho, J., Oliver, S., Willey, R., Oliveri, G., Busca, G.: Magnetic properties of partially-inverted zinc ferrite aerogel powders. J. Appl. Phys. 81(4), 1851–1857 (1997)

    ADS  Google Scholar 

  7. Musat, V., Potecasu, O., Belea, R., Alexandru, P.: Magnetic materials from co-precipitated ferrite nanoparticles. Mater. Sci. Eng. B. 167(2), 85–90 (2010)

    Google Scholar 

  8. Haun, J.B., Yoon, T.J., Lee, H., Weissleder, R.: Magnetic nanoparticle biosensors. Wiley interdisciplinary reviews. Nanomed. Nanobiotechnol. 2(3), 291–304 (2010). https://doi.org/10.1002/wnan.84

    Article  Google Scholar 

  9. Kumar, C.S., Mohammad, F.: Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery. Adv. Drug Deliv. Rev. 63(9), 789–808 (2011)

    Google Scholar 

  10. Sahoo, B., Devi, K.S.P., Dutta, S., Maiti, T.K., Pramanik, P., Dhara, D.: Biocompatible mesoporous silica-coated superparamagnetic manganese ferrite nanoparticles for targeted drug delivery and MR imaging applications. J. Colloid Interface Sci. 431, 31–41 (2014)

    ADS  Google Scholar 

  11. Zipare, K., Dhumal, J., Bandgar, S., Mathe, V., Shahane, G.: Superparamagnetic manganese ferrite nanoparticles: synthesis and magnetic properties. J. Nanosci. Nanoeng. 1(3), 178–182 (2015)

    Google Scholar 

  12. Vignesh, R.H., Sankar, K.V., Amaresh, S., Lee, Y.S., Selvan, R.K.: Synthesis and characterization of MnFe2O4 nanoparticles for impedometric ammonia gas sensor. Sensors Actuators B Chem. 220, 50–58 (2015)

    Google Scholar 

  13. Rahmayeni, R., Oktavia, Y., Stiadi, Y., Arief, S., Zulhadjri, Z.: Spinel ferrite of MnFe2O4 synthesized in Piper betle Linn extract media and its application as photocatalysts and antibacterial. J. Dispers. Sci. Technol. 42, 1–10 (2020)

    Google Scholar 

  14. Makridis, A., Topouridou, K., Tziomaki, M., Sakellari, D., Simeonidis, K., Angelakeris, M., Yavropoulou, M.P., Yovos, J.G., Kalogirou, O.: In vitro application of Mn-ferrite nanoparticles as novel magnetic hyperthermia agents. J. Mater. Chem. B. 2(47), 8390–8398 (2014)

    Google Scholar 

  15. Patade, S.R., Andhare, D.D., Somvanshi, S.B., Jadhav, S.A., Khedkar, M.V., Jadhav, K.: Self-heating evaluation of superparamagnetic MnFe2O4 nanoparticles for magnetic fluid hyperthermia application towards cancer treatment. Ceram. Int. 46(16), 25576–25583 (2020)

    Google Scholar 

  16. Chandunika, R., Vijayaraghavan, R., Sahu, N.K.: Magnetic hyperthermia application of MnFe2O4 nanostructures processed through solvents with the varying boiling point. Mater. Res. Express. 7(6), 064002 (2020)

    ADS  Google Scholar 

  17. Majidi, S., Zeinali Sehrig, F., Farkhani, S.M., Soleymani Goloujeh, M., Akbarzadeh, A.: Current methods for synthesis of magnetic nanoparticles. Artif. Cells, Nanomed. Biotechnol. 44(2), 722–734 (2016)

    Google Scholar 

  18. Aghajanzadeh, M., Naderi, E., Zamani, M., Sharafi, A., Naseri, M., Danafar, H.: In vivo and in vitro biocompatibility study of MnFe2O4 and Cr2Fe6O12 as photosensitizer for photodynamic therapy and drug delivery of anti-cancer drugs. Drug Dev. Ind. Pharm. 46(5), 846–851 (2020)

    Google Scholar 

  19. Wang, Z., Liu, J., Li, T., Liu, J., Wang, B.: Controlled synthesis of MnFe 2 O 4 nanoparticles and Gd complex-based nanocomposites as tunable and enhanced T 1/T 2-weighted MRI contrast agents. J. Mater. Chem. B. 2(29), 4748–4753 (2014)

    Google Scholar 

  20. Sharma, U.S., Sharma, R.N., Shah, R.: Physical and magnetic properties of manganese ferrite nanoparticles. Int. J. Eng. Res. Appl. 4(8), 14–17 (2014)

    Google Scholar 

  21. Augustin, M., Balu, T.: Synthesis and characterization of metal (Mn, Zn) ferrite magnetic nanoparticles. Mater. Today: Proc. 2(3), 923–927 (2015)

    Google Scholar 

  22. Deraz, N., Alarifi, A.: Controlled synthesis, physicochemical and magnetic properties of nano-crystalline Mn ferrite system. Int. J. Electrochem. Sci. 7, 5534–5543 (2012)

    Google Scholar 

  23. Phumying, S., Labuayai, S., Swatsitang, E., Amornkitbamrung, V., Maensiri, S.: Nanocrystalline spinel ferrite (MFe2O4, M= Ni, Co, Mn, Mg, Zn) powders prepared by a simple aloe vera plant-extracted solution hydrothermal route. Mater. Res. Bull. 48(6), 2060–2065 (2013)

    Google Scholar 

  24. Hashim, M., Shirsath, S.E., Meena, S., Mane, M., Kumar, S., Bhatt, P., Kumar, R., Prasad, N., Alla, S., Shah, J.: Manganese ferrite prepared using reverse micelle process: structural and magnetic properties characterization. J. Alloys Compd. 642, 70–77 (2015)

    Google Scholar 

  25. Gao, R.-R., Zhang, Y., Yu, W., Xiong, R., Shi, J.: Superparamagnetism and spin-glass like state for the MnFe2O4 nano-particles synthesized by the thermal decomposition method. J. Magn. Magn. Mater. 324(16), 2534–2538 (2012)

    ADS  Google Scholar 

  26. Bellusci, M., Aliotta, C., Fiorani, D., La Barbera, A., Padella, F., Peddis, D., Pilloni, M., Secci, D.: Manganese iron oxide superparamagnetic powder by mechanochemical processing. Nanoparticles functionalization and dispersion in a nanofluid. J. Nanopart. Res. 14(6), 1–11 (2012)

    Google Scholar 

  27. Aslibeiki, B., Kameli, P., Ehsani, M., Salamati, H., Muscas, G., Agostinelli, E., Foglietti, V., Casciardi, S., Peddis, D.: Solvothermal synthesis of MnFe2O4 nanoparticles: the role of polymer coating on morphology and magnetic properties. J. Magn. Magn. Mater. 399, 236–244 (2016)

    ADS  Google Scholar 

  28. Şimşek, T., Akansel, S., Özcan, Ş., Ceylan, A.: Synthesis of MnFe2O4 nanocrystals by wet-milling under atmospheric conditions. Ceram. Int. 40(6), 7953–7956 (2014)

    Google Scholar 

  29. Hou, X., Feng, J., Ren, Y., Fan, Z., Zhang, M.: Synthesis and adsorption properties of spongelike porous MnFe2O4. Colloids Surf. A Physicochem. Eng. Asp. 363(1-3), 1–7 (2010)

    Google Scholar 

  30. Goswami, P.P., Choudhury, H.A., Chakma, S., Moholkar, V.S.: Sonochemical synthesis and characterization of manganese ferrite nanoparticles. Ind. Eng. Chem. Res. 52(50), 17848–17855 (2013)

    Google Scholar 

  31. Ibrahim, I., Ali, I.O., Salama, T.M., Bahgat, A., Mohamed, M.M.: Synthesis of magnetically recyclable spinel ferrite (MFe2O4, M= Zn, Co, Mn) nanocrystals engineered by sol gel-hydrothermal technology: high catalytic performances for nitroarenes reduction. Appl. Catal. B Environ. 181, 389–402 (2016)

    Google Scholar 

  32. Rajput, N.: Methods of preparation of nanoparticles-a review. Int. J. Adv. Eng. Technol. 7(6), 1806 (2015)

    Google Scholar 

  33. Scano, A., Ennas, G., Frongia, F., La Barbera, A., López-Quintela, M.A., Marongiu, G., Paschina, G., Peddis, D., Pilloni, M., Vázquez-Vázquez, C.: Mn–ferrite nanoparticles via reverse microemulsions: synthesis and characterization. J. Nanopart. Res. 13(7), 3063–3073 (2011)

    ADS  Google Scholar 

  34. Suryanarayana, C., Prabhu, B.: Synthesis of nanostructured materials by inert-gas condensation methods. In: Nanostructured Materials, pp. 47–90. Elsevier (2007). https://doi.org/10.1016/B978-081551534-0.50004-X

  35. Grammatikopoulos, P., Steinhauer, S., Vernieres, J., Singh, V., Sowwan, M.: Nanoparticle design by gas-phase synthesis. Adv. Phys.: X. 1(1), 81–100 (2016)

    Google Scholar 

  36. Iles, G.N., Baker, S., Thornton, S., Binns, C.: Enhanced capability in a gas aggregation source for magnetic nanoparticles. J. Appl. Phys. 105(2), 024306 (2009)

    ADS  Google Scholar 

  37. Oprea, B., Martínez, L., Román, E., Vanea, E., Simon, S., Huttel, Y.: Dispersion and functionalization of nanoparticles synthesized by gas aggregation source: opening new routes toward the fabrication of nanoparticles for biomedicine. Langmuir. 31(51), 13813–13820 (2015)

    Google Scholar 

  38. Moras, K., Schaarschuch, R., Riehemann, W., Zinoveva, S., Modrow, H., Eberbeck, D.: Production and characterisation of magnetic nanoparticles produced by laser evaporation for ferrofluids. J. Magn. Magn. Mater. 293(1), 119–126 (2005)

    ADS  Google Scholar 

  39. Indira, T., Lakshmi, P.: Magnetic nanoparticles–a review. Int. J. Pharmaceut. Sci. Nanotechnol. 3(3), 1035–1042 (2010)

    Google Scholar 

  40. Islam, K., Haque, M., Kumar, A., Hoq, A., Hyder, F., Hoque, S.M.: Manganese ferrite nanoparticles (MnFe2O4): size dependence for hyperthermia and negative/positive contrast enhancement in MRI. Nanomaterials. 10(11), 2297 (2020)

    Google Scholar 

  41. Wu, W., He, Q., Jiang, C.: Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Res. Lett. 3(11), 397–415 (2008)

    ADS  Google Scholar 

  42. Biehl, P., Von der Lühe, M., Dutz, S., Schacher, F.H.: Synthesis, characterization, and applications of magnetic nanoparticles featuring polyzwitterionic coatings. Polymers. 10(1), 91 (2018)

    Google Scholar 

  43. Rane, A.V., Kanny, K., Abitha, V., Thomas, S.: Methods for synthesis of nanoparticles and fabrication of nanocomposites. In: Synthesis of inorganic nanomaterials, pp. 121–139. Woodhead Publishing (2018). https://doi.org/10.1016/B978-0-08-101975-7.00005-1

  44. Zhu, Y.-F., Du, R.-G., Chen, W., Qi, H.-Q., Lin, C.-J.: Photocathodic protection properties of three-dimensional titanate nanowire network films prepared by a combined sol–gel and hydrothermal method. Electrochem. Commun. 12(11), 1626–1629 (2010)

    Google Scholar 

  45. Suchanek, W.L., Riman, R.E.: Hydrothermal synthesis of advanced 668 ceramic powders. In: Advances in Science and Technology, vol. 45, pp. 184–193. Trans Tech Publications Ltd (2006). https://doi.org/10.4028/www.scientific.net/AST.45.184

  46. Boulos, M., Guillemet-Fritsch, S., Mathieu, F., Durand, B., Lebey, T., Bley, V.: Hydrothermal synthesis of nanosized BaTiO3 powders and dielectric properties of corresponding ceramics. Solid State Ionics. 176(13-14), 1301–1309 (2005)

    Google Scholar 

  47. Chen, Z., Zhan, G., Wu, Y., He, X., Lu, Z.: Sol–gel-hydrothermal synthesis and conductive properties of Al-doped ZnO nanopowders with controllable morphology. J. Alloys Compd. 587, 692–697 (2014)

    Google Scholar 

  48. Yu, H., Ouyang, S., Yan, S., Li, Z., Yu, T., Zou, Z.: Sol–gel hydrothermal synthesis of visible-light-driven Cr-doped SrTiO 3 for efficient hydrogen production. J. Mater. Chem. 21(30), 11347–11351 (2011)

    Google Scholar 

  49. Singhal, S., Namgyal, T., Singh, J., Chandra, K., Bansal, S.: A comparative study on the magnetic properties of MFe12O19 and MAlFe11O19 (M= Sr, Ba and Pb) hexaferrites with different morphologies. Ceram. Int. 37(6), 1833–1837 (2011)

    Google Scholar 

  50. Brunacci, N., Wischke, C., Naolou, T., Neffe, A.T., Lendlein, A.: Influence of surfactants on depsipeptide submicron particle formation. Eur. J. Pharm. Biopharm. 116, 61–65 (2017)

    Google Scholar 

  51. Rao, J.P., Geckeler, K.E.: Polymer nanoparticles: preparation techniques and size-control parameters. Prog. Polym. Sci. 36(7), 887–913 (2011)

    Google Scholar 

  52. Cullity, B.D., John, W.: Weymouth: elements of X-ray diffraction. Am J Phys. 25(6), 394–395 (1957)

    ADS  Google Scholar 

  53. Jalalian, M., Mirkazemi, S., Alamolhoda, S.: The effect of poly vinyl alcohol (PVA) surfactant on phase formation and magnetic properties of hydrothermally synthesized CoFe2O4 nanoparticles. J. Magn. Magn. Mater. 419, 363–367 (2016)

    ADS  Google Scholar 

  54. Yao, L., Xi, Y., Xi, G., Feng, Y.: Synthesis of cobalt ferrite with enhanced magnetostriction properties by the sol− gel− hydrothermal route using spent Li-ion battery. J. Alloys Compd. 680, 73–79 (2016)

    Google Scholar 

  55. Yalçın, O., Bayrakdar, H., Özüm, S.: Spin-flop transition, magnetic and microwave absorption properties of α-Fe2O4 spinel type ferrite nanoparticles. J. Magn. Magn. Mater. 343, 157–162 (2013)

    ADS  Google Scholar 

  56. Barakat, N.A., Park, S.J., Khil, M.S., Kim, H.Y.: Preparation of MnO nanofibers by novel hydrothermal treatment of manganese acetate/PVA electrospun nanofiber mats. Mater. Sci. Eng. B. 162(3), 205–208 (2009)

    Google Scholar 

  57. Angermann, A., Töpfer, J., Da Silva, K., Becker, K.: Nanocrystalline Mn–Zn ferrites from mixed oxalates: synthesis, stability and magnetic properties. J. Alloys Compd. 508(2), 433–439 (2010)

    Google Scholar 

  58. Hsiang, H.-I., Tsai, J.-Y.: Titanate coupling agent effects on nonaqueous Co 2 Z ferrite suspensions dispersion. J. Mater. Sci. 41(19), 6339–6346 (2006)

    ADS  Google Scholar 

  59. Rak Z.S.: From nanosize powders to a diesel soot converter. In: Baraton M.I., Uvarova I. (eds) Functional gradient materials and surface layers prepared by fine particles technology. NATO Science Series (Series II: Mathematics, Physics and Chemistry), vol 16. Springer, Dordrecht (2001). https://doi.org/10.1007/978-94-010-0702-3_9

  60. Jun, Y.W., Choi, J.S., Cheon, J.: Shape control of semiconductor and metal oxide nanocrystals through nonhydrolytic colloidal routes. Angew. Chem. Int. Ed. 45(21), 3414–3439 (2006)

    Google Scholar 

  61. Shi, R., Gao, G., Yi, R., Zhou, K., Qiu, G., Liu, X.: Controlled synthesis and characterization of monodisperse Fe3O4 nanoparticles. Chin. J. Chem. 27(4), 739–744 (2009)

    Google Scholar 

  62. Dixit, S.G., Mahadeshwar, A.R., Haram, S.K.: Some aspects of the role of surfactants in the formation of nanoparticles. Colloids Surf. A Physicochem. Eng. Asp. 133(1-2), 69–75 (1998)

    Google Scholar 

  63. Özgür, Ü., Alivov, Y., Morkoç, H.: Microwave ferrites, part 1: fundamental properties. J. Mater. Sci. Mater. Electron. 20(9), 789–834 (2009)

    Google Scholar 

  64. Li, J., Yuan, H., Li, G., Liu, Y., Leng, J.: Cation distribution dependence of magnetic properties of sol–gel prepared MnFe2O4 spinel ferrite nanoparticles. J. Magn. Magn. Mater. 322(21), 3396–3400 (2010)

    ADS  Google Scholar 

  65. Mosivand, S., Monzon, L., Kazeminezhad, I., Coey, J.M.D.: Influence of growth conditions on magnetite nanoparticles electro-crystallized in the presence of organic molecules. Int. J. Mol. Sci. 14(5), 10383–10396 (2013)

    Google Scholar 

  66. Mohammed, E., Malini, K., Kurian, P., Anantharaman, M.: Modification of dielectric and mechanical properties of rubber ferrite composites containing manganese zinc ferrite. Mater. Res. Bull. 37(4), 753–768 (2002)

    Google Scholar 

  67. Mostafa, N.Y., Zaki, Z., Heiba, Z.: Structural and magnetic properties of cadmium substituted manganese ferrites prepared by hydrothermal route. J. Magn. Magn. Mater. 329, 71–76 (2013)

    ADS  Google Scholar 

  68. Hochepied, J., Pileni, M.: Magnetic properties of mixed cobalt–zinc ferrite nanoparticles. J. Appl. Phys. 87(5), 2472–2478 (2000)

    ADS  Google Scholar 

  69. Kumar, L., Kumar, P., Kar, M.: Cation distribution by Rietveld technique and magnetocrystalline anisotropy of Zn substituted nanocrystalline cobalt ferrite. J. Alloys Compd. 551, 72–81 (2013)

    Google Scholar 

  70. Mostafa, N.Y., Hessien, M., Shaltout, A.A.: Hydrothermal synthesis and characterizations of Ti substituted Mn-ferrites. J. Alloys Compd. 529, 29–33 (2012)

    Google Scholar 

  71. Bolarín-Miró, A.M., Vera-Serna, P., Sánchez-De Jesús, F., Cortés-Escobedo, C.A., Martínez-Luevanos, A.: Mechanosynthesis and magnetic characterization of nanocrystalline manganese ferrites. J. Mater. Sci. Mater. Electron. 22(8), 1046–1052 (2011)

    Google Scholar 

  72. Pourbafarani, S., Mozaffari, M., Amighian, J.: Investigation of phase formation and magnetic properties of Mn ferrite nanoparticles prepared via low-power ultrasonic assisted co-precipitation method. J. Supercond. Nov. Magn. 26(3), 675–678 (2013)

    Google Scholar 

  73. Zhang, Y., Nan, Z.: Modified magnetic properties of MnFe2O4 by CTAB with coprecipitation method. Mater. Lett. 149, 22–24 (2015)

    Google Scholar 

  74. Šepelák, V., Bergmann, I., Menzel, D., Feldhoff, A., Heitjans, P., Litterst, F., Becker, K.: Magnetization enhancement in nanosized MgFe2O4 prepared by mechanosynthesis. J. Magn. Magn. Mater. 316(2), e764–e767 (2007)

    ADS  Google Scholar 

  75. Chlan, Vaojtěch.: Hyperfine Interactions in Ferrites with spinel structure. Praha, 2013. Rigorózní práce. Univerzita Karlova, Matematicko-fyzikální fakulta, Katedra fyziky kondenzovaných látek. http://hdl.handle.net/20.500.11956/60890. Accessed October 11 2020

  76. Lin, C.-S., Hwang, C.-C., Huang, T.-H., Wang, G.-P., Peng, C.-H.: Fine powders of SrFe12O19 with SrTiO3 additive prepared via a quasi-dry combustion synthesis route. Mater. Sci. Eng. B. 139(1), 24–36 (2007)

    Google Scholar 

  77. Gubbala, S., Nathani, H., Koizol, K., Misra, R.: Magnetic properties of nanocrystalline Ni–Zn, Zn–Mn, and Ni–Mn ferrites synthesized by reverse micelle technique. Phys. B Condens. Matter. 348(1-4), 317–328 (2004)

    ADS  Google Scholar 

  78. Victory, M., Pant, R., Phanjoubam, S.: Synthesis and characterization of oleic acid coated Fe–Mn ferrite based ferrofluid. Mater. Chem. Phys. 240, 122210 (2020)

    Google Scholar 

  79. Son, S., Swaminathan, R., McHenry, M.: Structure and magnetic properties of rf thermally plasma synthesized Mn and Mn–Zn ferrite nanoparticles. J. Appl. Phys. 93(10), 7495–7497 (2003)

    ADS  Google Scholar 

  80. Kanitz, A., Hoppius, J.S., del Mar Sanz, M., Maicas, M., Ostendorf, A., Gurevich, E.L.: Synthesis of magnetic nanoparticles by ultrashort pulsed laser ablation of iron in different liquids. ChemPhysChem. 18(9), 1155–1164 (2017)

    Google Scholar 

  81. Vijayakumar, R., Koltypin, Y., Felner, I., Gedanken, A.: Sonochemical synthesis and characterization of pure nanometer-sized Fe3O4 particles. Mater. Sci. Eng. A. 286(1), 101–105 (2000)

    Google Scholar 

  82. Yetim, N.K., Baysak, F.K.U., Koç, M.M., Nartop, D.: Characterization of magnetic Fe3O4@SiO2 nanoparticles with fluorescent properties for potential multipurpose imaging and theranostic applications. J. Mater. Sci. Mater. Electron. 31, 18278–18288 (2020)

    Google Scholar 

  83. Yetim, N.K., Aslan, N., Koç, M.M.: Structural and catalytic properties of Fe3O4 doped Bi2S3 novel magnetic nanocomposites: p-nitrophenol case. J. Environ. Chem. Eng. 8(5), 104258 (2020)

    Google Scholar 

  84. Kavousi, F., Goodarzi, M., Ghanbari, D., Hedayati, K.: Synthesis and characterization of a magnetic polymer nanocomposite for the release of metoprolol and aspirin. J. Mol. Struct. 1183, 324–330 (2019)

    ADS  Google Scholar 

  85. Tumturk, H., Sahin, F., Turan, E.: Magnetic nanoparticles coated with different shells for biorecognition: high specific binding capacity. Analyst. 139(5), 1093–1100 (2014)

    ADS  Google Scholar 

  86. Hedayati, K., Goodarzi, M., Kord, M.: Green and facile synthesis of Fe3O4-PbS magnetic nanocomposites applicable for the degradation of toxic organic dyes. Main Group Metal Chem. 39(5-6), 183–194 (2016)

    Google Scholar 

  87. Lwin, N., Fauzi, M.A., Sreekantan, S., Othman, R.: Physical and electromagnetic properties of nanosized Gd substituted Mg–Mn ferrites by solution combustion method. Phys. B Condens. Matter. 461, 134–139 (2015)

    ADS  Google Scholar 

  88. Ceylan, A., Ozcan, S., Ni, C., Shah, S.I.: Solid state reaction synthesis of NiFe2O4 nanoparticles. J. Magn. Magn. Mater. 320(6), 857–863 (2008)

    ADS  Google Scholar 

  89. Nawale, A.B., Kanhe, N.S., Patil, K., Bhoraskar, S., Mathe, V., Das, A.: Magnetic properties of thermal plasma synthesized nanocrystalline nickel ferrite (NiFe2O4). J. Alloys Compd. 509(12), 4404–4413 (2011)

    Google Scholar 

  90. Jacintha, A.M., Umapathy, V., Neeraja, P., Rajkumar, S.R.J.: Synthesis and comparative studies of MnFe 2 O 4 nanoparticles with different natural polymers by sol–gel method: structural, morphological, optical, magnetic, catalytic and biological activities. J. Nanostruct. Chem. 7(4), 375–387 (2017)

    Google Scholar 

  91. Amighian, J., Mozaffari, M., Nasr, B.: Preparation of nano-sized manganese ferrite (MnFe2O4) via coprecipitation method. Phys. Status Solidi C. 3(9), 3188–3192 (2006)

    ADS  Google Scholar 

  92. Aslibeiki, B., Kameli, P., Ehsani, M.: MnFe2O4 bulk, nanoparticles and film: a comparative study of structural and magnetic properties. Ceram. Int. 42(11), 12789–12795 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Mohammad Mirkazemi.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezaei, M., Mirkazemi, S.M. & Alamolhoda, S. The Role of PVA Surfactant on Magnetic Properties of MnFe2O4 Nanoparticles Synthesized by Sol-Gel Hydrothermal Method. J Supercond Nov Magn 34, 1397–1408 (2021). https://doi.org/10.1007/s10948-021-05830-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-021-05830-0

Keywords

Navigation