Skip to main content
Log in

Evaluation of the Anticoagulant and Catalytic Activities of the Bridelia retusa Fruit Extract-Functionalized Silver Nanoparticles

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

An eco-friendly, green synthesis of silver nanoparticles (SNPs) employing the fruit extract of Bridelia retusa was investigated. The UV–visible spectrum showed the surface plasmon peak at 436 nm, a characteristic feature of SNPs. SEM image showed spherical nanoparticles and EDX evidenced the presence of metallic silver with a strong signal for silver atoms at 2.98 keV. XRD patterns verified the crystalline nature of the SNPs which depicted a sharp peak at 38.52° corresponding to (111) plane and the average crystallite size was determined as 22.48 nm. Fourier Transform Infrared spectroscopic analysis confirmed the role of phenolic compounds in the synthesis and stabilization of nanoparticles. The average hydrodynamic diameter of the nanoparticles was 68.49 nm and their polydispersity index was 0.171 which corroborated the monodispersity. A high negative zeta potential value (−27 mV) provided the stability to the colloidal nanoparticle solution. The accelerated reduction of the Congo red dye in the presence of SNPs with a degradation rate constant of 0.056 min−1 confirmed the catalytic potential of nanoparticles. Moreover, the synthesised nanoparticles inhibited the formation of blood clots in human blood samples which proved the anticoagulant activity and hence the nanoparticles can be used in nanomedicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. K. Venugopal, et al. (2016). Synthesis of silver nanoparticles (Ag NPs) for anticancer activities (MCF 7 breast and A549 lung cell lines) of the crude extract of Syzygium aromaticum. J. Photochem. Photobiol. B Biol. 167, 282–289.

    Article  Google Scholar 

  2. V. Kumar, D. K. Singh, S. Mohan, R. K. Gundampati, and S. H. Hasan (2017). Photoinduced green synthesis of silver nanoparticles using aqueous extract of Physalis angulata and its antibacterial and antioxidant activity. J. Environ. Chem. Eng. 5, 744–756.

    Article  CAS  Google Scholar 

  3. A. Lateef, S. A. Ojo, and S. M. Oladejo (2016). Anti-candida, anti-coagulant and thrombolytic activities of biosynthesized silver nanoparticles using cell-free extract of Bacillus safensis LAU 13. Process Biochem. 51, (10), 1406–1412.

    Article  CAS  Google Scholar 

  4. E. E. Elemike, D. C. Onwudiwe, A. C. Ekennia, R. C. Ehiri, and N. J. Nnaji (2017). Phytosynthesis of silver nanoparticles using aqueous leaf extracts of Lippia citriodora: antimicrobial, larvicidal and photocatalytic evaluations. Mater. Sci. Eng. C 75, 980–989.

    Article  CAS  Google Scholar 

  5. M. N. M. Cunha, H. P. Felgueiras, I. Gouveia, and A. Zille (2017). Synergistically enhanced stability of laccase immobilized on synthesized silver nanoparticles with water-soluble polymers. Colloids Surfaces B Biointerfaces 154, 210–220.

    Article  CAS  Google Scholar 

  6. B. Sinduja and S. A. John (2017). Ultrasensitive optical sensor for hydrogen peroxide using silver nanoparticles synthesized at room temperature by GQDs. Sens. Actuators B Chem. 247, 648–654.

    Article  CAS  Google Scholar 

  7. K. Tahir, et al. (2015). An efficient photo catalytic activity of green synthesized silver nanoparticles using Salvadora persica stem extract. Sep. Purif. Technol. 150, 316–324.

    Article  CAS  Google Scholar 

  8. B. Kumari and D. P. Singh (2016). A review on multifaceted application of nanoparticles in the field of bioremediation of petroleum hydrocarbons. Ecol. Eng. 97, 98–105.

    Article  Google Scholar 

  9. V. A. Litvin, R. L. Galagan, and B. F. Minaev (2012). Colloids and surfaces A: physicochemical and engineering aspects kinetic and mechanism formation of silver nanoparticles coated by synthetic humic substances. Colloids Surfaces A Physicochem. Eng. Asp. 414, 234–243.

    Article  CAS  Google Scholar 

  10. R. M. Kumari, N. Thapa, N. Gupta, A. Kumar, and S. Nimesh (2016). Antibacterial and photocatalytic degradation efficacy of silver nanoparticles biosynthesized using Cordia dichotoma leaf extract. Adv. Nat. Sci. Nanosci. Nanotechnol. 7, (4), 45009.

    Article  Google Scholar 

  11. H. Kolya, P. Maiti, A. Pandey, and T. Tripathy (2015). Green synthesis of silver nanoparticles with antimicrobial and azo dye (Congo red) degradation properties using Amaranthus gangeticus Linn leaf extract. J. Anal. Sci. Technol. 6, (1), 33–39.

    Article  Google Scholar 

  12. S. Hamedi, S. Abbas, and A. Mohammadi (2017). Evaluation of the catalytic, antibacterial and anti-bio fi lm activities of the Convolvulus arvensis extract functionalized silver nanoparticles. J. Photochem. Photobiol. B Biol. 167, 36–44.

    Article  CAS  Google Scholar 

  13. J. Lee, et al. (2017). Physiological and molecular plant pathology A novel photo-biological engineering method for Salvia miltiorrhiza—Mediated fabrication of silver nanoparticles using LED lights sources and its effectiveness against Aedes aegypti mosquito larvae and microbial pathogens. Physiol. Mol. Plant Pathol. 1–9.

  14. V. Ravichandran, S. Vasanthi, S. Shalini, S. Adnan, and A. Shah (2016). Green synthesis of silver nanoparticles using Atrocarpus altilis leaf extract and the study of their antimicrobial and antioxidant activity. Mater. Lett. 180, 264–267.

    Article  CAS  Google Scholar 

  15. A. K. Owk and M. N. Lagudu (2016). Bridelia retusa (L.) Spreng. Fruits: antimicrobial efficiency and their phytochemical constituents. Not. Sci. Biol. 8, (1), 33–36.

    Article  Google Scholar 

  16. S. K. M. S. Malhotra (1973). Some useful and medicinal plants of Chandrapur district (Maharashtra State). Bull. Bot. Surv. India 15, 13–21.

    Google Scholar 

  17. T. Kumar and V. Jain (2014). Antinociceptive and anti-inflammatory activities of bridelia retusa methanolic fruit extract in experimental animals. Sci. World J. 2014, 890151. doi:10.1155/2014/890151.

    Google Scholar 

  18. V. Ramesh, V. Thivaharan and S. Raja (2017). Green synthesis, structural characterization, and catalytic activity of silver nanoparticles stabilized with Bridelia retusa leaf extract. Green Process. Synth. doi:10.1515/gps-2016-0236.

  19. S. Raja, V. Ramesh, and V. Thivaharan (2015). Antibacterial and anticoagulant activity of silver nanoparticles synthesised from a novel source-pods of Peltophorum pterocarpum. J. Ind. Eng. Chem. 29, 257–264.

    Article  CAS  Google Scholar 

  20. V. K. Vidhu and D. Philip (2014). Spectroscopic, microscopic and catalytic properties of silver nanoparticles synthesized using Saraca indica flower. Spectrochim. Acta Part A Mol. Biomol Spectrosc. 117, 102–108.

    Article  CAS  Google Scholar 

  21. S. Phongtongpasuk, S. Poadang, and N. Yongvanich (2016). Environmental-friendly method for synthesis of silver nanoparticles from dragon fruit peel extract and their antibacterial activities. Energy Proced. 89, 239–247.

    Article  CAS  Google Scholar 

  22. S. Gul, et al. (2016). Novel synthesis of silver nanoparticles using melon aqueous extract and evaluation of their feeding deterrent activity against housefly Musca domestica. Asian Pac. J. Trop. Dis. 6, (4), 311–316.

    Article  Google Scholar 

  23. S. Eustis and M. A. El-Sayed (2006). Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem. Soc. Rev. 35, (3), 209–217.

    Article  CAS  Google Scholar 

  24. A. Ahmad, et al. (2016). Isatis tinctoria mediated synthesis of amphotericin B-bound silver nanoparticles with enhanced photoinduced antileishmanial activity: a novel green approach. J. Photochem. Photobiol. B Biol. 161, 17–24.

    Article  CAS  Google Scholar 

  25. S. Ahmed, M. Saifullah, M. Ahmad, B. L. Swami, and S. Ikram (2016). Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract. J. Radiat. Res. Appl. Sci. 9, (1), 1–7.

    Article  Google Scholar 

  26. M. F. Zayed, W. H. Eisa, Y. K. Abdel-Moneam, S. M. El-kousy, and A. Atia (2015). Ziziphus spina-christi based bio-synthesis of Ag nanoparticles. J. Ind. Eng. Chem. 23, 50–56.

    Article  CAS  Google Scholar 

  27. B. Kumar, K. Smita, L. Cumbal, and A. Debut (2016). Ficus carica (Fig) fruit mediated green synthesis of silver nanoparticles and its antioxidant activity: a comparison of thermal and ultrasonication approach. Bionanoscience 6, (1), 15–21.

    Article  Google Scholar 

  28. A. Saravanakumar, M. Ganesh, J. Jayaprakash, and H. T. Jang (2015). Biosynthesis of silver nanoparticles using Cassia tora leaf extract and its antioxidant and antibacterial activities. J. Ind. Eng. Chem. 28, 277–281.

    Article  CAS  Google Scholar 

  29. D. Mubarakali, N. Thajuddin, K. Jeganathan, and M. Gunasekaran (2011). Plant extract mediated synthesis of silver and gold nanoparticles and its antibacterial activity against clinically isolated pathogens. Colloids Surfaces B Biointerfaces 85, (2), 360–365.

    Article  CAS  Google Scholar 

  30. T. V. M. Sreekanth, S. Ravikumar, and I. Y. Eom (2014). Green synthesized silver nanoparticles using Nelumbo nucifera root extract for efficient protein binding, antioxidant and cytotoxicity activities. J. Photochem. Photobiol. B Biol. 141, 100–105.

    Article  CAS  Google Scholar 

  31. W. Zhang, Z. Chen, H. Liu, L. Zhang, P. Gao, and D. Li (2011). Biosynthesis and structural characteristics of selenium nanoparticles by Pseudomonas alcaliphila. Colloids Surfaces B Biointerfaces 88, (1), 196–201.

    Article  CAS  Google Scholar 

  32. N. Saha, P. Trivedi, and S. D. Gupta (2016). Surface plasmon resonance (SPR) based optimization extract of Curculigo orchioides gaertn. and Its. J. Clust. Sci. 27, (6), 1893–1912.

    Article  CAS  Google Scholar 

  33. V. A. Litvin and B. F. Minaev (2014). The size-controllable, one-step synthesis and characterization of gold nanoparticles protected by synthetic humic substances. Mater. Chem. Phys. 144, (1–2), 168–178.

    Article  CAS  Google Scholar 

  34. S. Rajeshkumar, C. Malarkodi, M. Vanaja, and G. Annadurai (2016). Anticancer and enhanced antimicrobial activity of biosynthesizd silver nanoparticles against clinical pathogens. J. Mol. Struct. 1116, 165–173.

    Article  CAS  Google Scholar 

  35. S. Raja, V. Ramesh, and V. Thivaharan (2017). Green biosynthesis of silver nanoparticles using Calliandra haematocephala leaf extract, their antibacterial activity and hydrogen peroxide sensing capability. Arab. J. Chem. 10, (2), 253–261.

    Article  CAS  Google Scholar 

  36. S. V. Patil, H. P. Borase, C. D. Patil, and B. K. Salunke (2012). Biosynthesis of silver nanoparticles using latex from few euphorbian plants and their antimicrobial potential. Appl. Biochem. Biotechnol. 167, (4), 776–790.

    Article  CAS  Google Scholar 

  37. A. R. Shahverdi, S. Minaeian, H. R. Shahverdi, H. Jamalifar, and A. A. Nohi (2007). Rapid synthesis of silver nanoparticles using culture supernatants of Enterobacteria: a novel biological approach. Process Biochem. 42, (5), 919–923.

    Article  CAS  Google Scholar 

  38. J. S. Almeida, F. Lima, S. Da Ros, L. O. S. Bulhões, L. M. de Carvalho, and R. C. R. Beck (2010). Nanostructured systems containing rutin. In vitro antioxidant activity and photostability studies. Nanoscale Res. Lett. 5, (10), 1603–1610.

    Article  CAS  Google Scholar 

  39. T. C. Prathna, N. Chandrasekaran, A. M. Raichur, and A. Mukherjee (2011). Kinetic evolution studies of silver nanoparticles in a bio-based green synthesis process. Colloids Surfaces A Physicochem. Eng. Asp. 377, (1–3), 212–216.

    Article  CAS  Google Scholar 

  40. M. Sathishkumar, K. Sneha, S. W. Won, C. W. Cho, S. Kim, and Y. S. Yun (2009). Cinnamon zeylanicum bark extract and powder mediated green synthesis of nano-crystalline silver particles and its bactericidal activity. Colloids Surfaces B Biointerfaces 73, (2), 332–338.

    Article  CAS  Google Scholar 

  41. S. Shrivastava, T. Bera, S. K. Singh, G. Singh, P. Ramachandrarao, and D. Dash (2009). Characterization of antiplatelet properties of sivler nanoparticles. ACS Nano 3, (6), 1357–1364.

    Article  CAS  Google Scholar 

  42. V. A. Sakkas, M. A. Islam, C. Stalikas, and T. A. Albanis (2010). Photocatalytic degradation using design of experiments: a review and example of the Congo red degradation. J. Hazard. Mater. 175, (1–3), 33–44.

    Article  CAS  Google Scholar 

  43. B. Ajitha, Y. Ashok Kumar Reddy, S. Shameer, K. M. Rajesh, Y. Suneetha, and P. Sreedhara Reddy (2015). Lantana camara leaf extract mediated silver nanoparticles: antibacterial, green catalyst. J. Photochem. Photobiol. B Biol. 149, 84–92.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The contributors thankfully acknowledge the Department of Biotechnology, Manipal Institute of Technology (MIT), Manipal University for providing all the facilities to perform the research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raja Selvaraj.

Ethics declarations

Conflict of interests

The contributors declare that they do not have any conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vinayagam, R., Varadavenkatesan, T. & Selvaraj, R. Evaluation of the Anticoagulant and Catalytic Activities of the Bridelia retusa Fruit Extract-Functionalized Silver Nanoparticles. J Clust Sci 28, 2919–2932 (2017). https://doi.org/10.1007/s10876-017-1270-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-017-1270-5

Keywords

Navigation