Skip to main content
Log in

Preparation and characterization of PVA/PVP conductive hydrogels formed by freeze–thaw processes as a promising material for sensor applications

  • Polymers & biopolymers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Biocompatible and multifunctional stretchable hydrogels have attracted growing interests for applications including electronic skin and soft robotics. This paper presents a conductive and humidity sensitive hydrogel formed by poly (vinyl alcohol) (PVA) and poly (vinylpyrrolidone) (PVP). Different from previous approaches where microwave-assisted aldol condensation reactions are needed to form the material, in this work, we demonstrate forming the hydrogel through only freeze–thaw process. The resulting hydrogel features a gauge factor (~ 0.8), which is higher than that of the strain sensor fabricated through traditional approach during the strain range up to 40%. Furthermore, the structural, elastic, thermal and electrical properties of the polymer blend are evaluated so the operating environment can be identified. Our experimental results show that elasticity of the blend reduces in air due to drying that cannot be completely restored. Moreover, the conductivity of the hydrogel changes with different ambient temperatures and humidity. Finally, the hydrogel is explored as a humidity sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Fu X, Wang L, Zhao L, Yuan Z, Zhang Y, Wang D, Wang D, Li J, Li D, Shulga V, Shen G, Han W (2021) Controlled assembly of mxene nanosheets as an electrode and active layer for high-performance electronic skin. Adv Func Mater 31(17):2010533

    Article  CAS  Google Scholar 

  2. Sachyani Keneth E, Kamyshny A, Totaro M, Beccai L, Magdassi S (2021) 3D printing materials for soft robotics. Adv Mater 33(19):2003387

    Article  CAS  Google Scholar 

  3. Yi Y, Chiao M, Wang B (2021) An electrochemically actuated drug delivery device with in-situ dosage sensing. Smart Mater Struct 30(5):055003

    Article  CAS  Google Scholar 

  4. Lu L, Jiang C, Hu G, Liu J, Yang B (2021) Flexible noncontact sensing for human-machine interaction. Adv Mater 33(16):2100218

    Article  CAS  Google Scholar 

  5. Yi Y, Samara A, Wang B (2021) A new approach for an ultra-thin piezoresistive sensor based on solidified carbon ink film. J Mater Sci 56(1):607–614. https://doi.org/10.1007/s10853-020-05309-8

    Article  CAS  Google Scholar 

  6. Yi Y, Wang B, Bermak A (2019) A low-cost strain gauge displacement sensor fabricated via shadow mask printing. Sensors 19(21):4713

    Article  CAS  Google Scholar 

  7. Zhang W, Feng P, Chen J, Sun Z, Zhao B (2019) Electrically conductive hydrogels for flexible energy storage systems. Prog Polym Sci 88:220–240

    Article  CAS  Google Scholar 

  8. Kang J, Tok JBH, Bao Z (2019) Self-healing soft electronics. Nature Electronics 2(4):144–150

    Article  Google Scholar 

  9. Pita-López ML, Fletes-Vargas G, Espinosa-Andrews H, Rodríguez-Rodríguez R (2021) Physically cross-linked chitosan-based hydrogels for tissue engineering applications: a state-of-the-art review. Eur Polym J 145:110176

    Article  Google Scholar 

  10. Yokoyama F, Masada I, Shimamura K, Ikawa T, Monobe K (1986) Morphology and structure of highly elastic poly (vinyl alcohol) hydrogel prepared by repeated freezing-and-melting. Colloid Polym Sci 264(7):595–601

    Article  CAS  Google Scholar 

  11. Lu Y, Qu X, Zhao W, Ren Y, Si W, Wang W, Wang Q, Huang W, Dong X (2020) Highly stretchable, elastic, and sensitive MXene-based hydrogel for flexible strain and pressure sensors. Research, 2038560

  12. Bercea M, Darie RN, Niţă LE, Morariu S (2011) Temperature responsive gels based on pluronic F127 and poly (vinyl alcohol). Indus Eng Chem Res 50(7):4199–4206

  13. Fechine GJM, Barros JAG, Catalani LH (2004) Poly (N-vinyl-2-pyrrolidone) hydrogel production by ultraviolet radiation: new methodologies to accelerate crosslinking. Polymer 45(14):4705–4709

    Article  CAS  Google Scholar 

  14. Zheng Y, Huang X, Wang Y, Xu H, Chen X (2009) Performance and characterization of irradiated poly (vinyl alcohol)/polyvinylpyrrolidone composite hydrogels used as cartilages replacement. J Appl Polym Sci 113(2):736–741

    Article  CAS  Google Scholar 

  15. Bercea M, Morariu S, Rusu D (2013) In situ gelation of aqueous solutions of entangled poly (vinyl alcohol). Soft Matter 9(4):1244–1253

    Article  CAS  Google Scholar 

  16. Rajesh K, Crasta V, Kumar NR, Shetty G, Rekha PD (2019) Structural, optical, mechanical and dielectric properties of titanium dioxide doped PVA/PVP nanocomposite. J Polym Res 26(4):1–10

    Article  CAS  Google Scholar 

  17. Suciu AN, Iwatsubo T, Matsuda M, Nishino T (2004) A study upon durability of the artificial knee joint with PVA hydrogel cartilage. JSME Int J, Ser C 47(1):199–208

    Article  Google Scholar 

  18. Biswas A, Willet JL, Gordon SH, Finkenstadt VL, Cheng HN (2006) Complexation and blending of starch, poly (acrylic acid), and poly (N-vinyl pyrrolidone). Carbohyd Polym 65(4):397–403

    Article  CAS  Google Scholar 

  19. Wang L, Zeng R, Li C, Qiao R (2009) Self-assembled polypeptide-block-poly (vinylpyrrolidone) as prospective drug-delivery systems. Colloids Surf B 74(1):284–292

    Article  CAS  Google Scholar 

  20. Leiva A, Quina FH, Araneda E, Gargallo L, Radić D (2007) New three-arm amphiphilic and biodegradable block copolymers composed of poly (ε-caprolactone) and poly (N-vinyl-2-pyrrolidone). Synthesis, characterization and self-assembly in aqueous solution. J Coll Interf Sci 310(1):136–143

    Article  CAS  Google Scholar 

  21. Teodorescu M, Morariu S, Bercea M, Săcărescu L (2016) Viscoelastic and structural properties of poly (vinyl alcohol)/poly (vinylpyrrolidone) hydrogels. RSC Adv 6(46):39718–39727

    Article  CAS  Google Scholar 

  22. Leone G, Consumi M, Greco G, Bonechi C, Lamponi S, Rossi C, Magnani A (2011) A PVA/PVP hydrogel for human lens substitution: Synthesis, rheological characterization, and in vitro biocompatibility. J Biomed Mater Res B Appl Biomater 97(2):278–288

    Article  Google Scholar 

  23. Nishio Y, Haratani T, Takahashi T (1990) Miscibility and orientation behavior of poly (vinyl alcohol)/poly (vinyl pyrrolidone) blends. J Polym Sci, Part B Polym Phys 28(3):355–376

    Article  CAS  Google Scholar 

  24. Shi Y, Xiong D, Liu Y, Wang N, Zhao X (2016) Swelling, mechanical and friction properties of PVA/PVP hydrogels after swelling in osmotic pressure solution. Mater Sci Eng, C 65:172–180

    Article  CAS  Google Scholar 

  25. Awadallah-F A (2014) Five years in vitro study of (poly vinyl alcohol/poly vinyl pyrrolidone/poly acrylic acid) hydrogel to mimic the knee joint meniscus. Polym Adv Technol 25(5):581–587

    Article  CAS  Google Scholar 

  26. Trung TQ, Lee NE (2016) Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoringand personal healthcare. Adv Mater 28(22):4338–4372

    Article  CAS  Google Scholar 

  27. Fiorillo AS, Critello CD, Pullano SA (2018) Theory, technology and applications of piezoresistive sensors: a review. Sens Actuators A 281:156–175

    Article  CAS  Google Scholar 

  28. Ding Y, Xu T, Onyilagha O, Fong H, Zhu Z (2019) Recent advances in flexible and wearable pressure sensors based on piezoresistive 3D monolithic conductive sponges. ACS Appl Mater Interf 11(7):6685–6704

    Article  CAS  Google Scholar 

  29. Surmenev RA, Chernozem RV, Pariy IO, Surmeneva MA (2021) A review on piezo-and pyroelectric responses of flexible nano-and micropatterned polymer surfaces for biomedical sensing and energy harvesting applications. Nano Energy 79:105442

    Article  CAS  Google Scholar 

  30. Liu YJ, Fu LH, Liu S, Meng LY, Li YY, Ma MG (2016) Synthetic self-assembled homogeneous network hydrogels with high mechanical and recoverable properties for tissue replacement. J Mater Chem B 4(28):4847–4854

    Article  CAS  Google Scholar 

  31. Ma R, Xiong D, Miao F, Zhang J, Peng Y (2009) Novel PVP/PVA hydrogels for articular cartilage replacement. Mater Sci Eng C 29(6):1979–1983

    Article  CAS  Google Scholar 

  32. Chen YN, Peng L, Liu T, Wang Y, Shi S, Wang H (2016) Poly (vinyl alcohol)–tannic acid hydrogels with excellent mechanical properties and shape memory behaviors. ACS Appl Mater Interf 8(40):27199–27206

    Article  CAS  Google Scholar 

  33. Choudhary S, Sengwa RJ (2018) ZnO nanoparticles dispersed PVA–PVP blend matrix based high performance flexible nanodielectrics for multifunctional microelectronic devices. Curr Appl Phys 18(9):1041–1058

    Article  Google Scholar 

  34. Hodge RM, Edward GH, Simon GP (1996) Water absorption and states of water in semicrystalline poly (vinyl alcohol) films. Polymer 37(8):1371–1376

    Article  CAS  Google Scholar 

  35. Rajeswari N, Selvasekarapandian S, Karthikeyan S, Sanjeeviraja C, Iwai Y, Kawamura J (2013) Structural, vibrational, thermal, and electrical properties of PVA/PVP biodegradable polymer blend electrolyte with CH3COONH4. Ionics 19(8):1105–1113

    Article  CAS  Google Scholar 

  36. Price DC, Davenport WG (1980) Densities, electrical conductivities and viscosities of CuSO 4/H 2 SO 4 solutions in the range of modern electrorefining and electrowinning electrolytes. Metall Trans B 11(1):159–163

    Article  Google Scholar 

  37. Liu Z, Liu J, Zhang J, Zheng B, Ren X, Long Y, Fang L, Ou R, Liu T, Wang Q (2020) Highly compressible hydrogel sensors with synergistic long-lasting moisture, extreme temperature tolerance and strain-sensitivity properties. Mater Chem Front 4(11):3319–3327

    Article  CAS  Google Scholar 

  38. Holloway JL, Spiller KL, Lowman AM, Palmese GR (2011) Analysis of the in vitro swelling behavior of poly (vinyl alcohol) hydrogels in osmotic pressure solution for soft tissue replacement. Acta Biomater 7(6):2477–2482

    Article  CAS  Google Scholar 

Download references

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing financial interest.

Additional information

Handling Editor: Chris Cornelius.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yi, Y., Chiao, M., Mahmoud, K.A. et al. Preparation and characterization of PVA/PVP conductive hydrogels formed by freeze–thaw processes as a promising material for sensor applications. J Mater Sci 57, 8029–8038 (2022). https://doi.org/10.1007/s10853-022-07179-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07179-8

Navigation