Skip to main content
Log in

Dietary Spirulina (Arthrospira platensis) replacement enhances performance of juvenile Nile tilapia (Oreochromis niloticus)

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

A feeding trial was conducted to evaluate the effects of Spirulina (Arthrospira platensis) inclusion in experimental diets of juvenile Nile tilapia (Oreochromis niloticus). Iso-nitrogenous and iso-lipidic diets were prepared using a positive control diet (S0) and four basal diets with A. platensis at 30 % (S30), 45 % (S45), 60 % (S60), and 75 % (S75) inclusion levels. Experimental diets were randomly assigned to tanks (13.35 kg m−3) with initial body weight of 0.89 ± 0.02 g in triplicates. The results of the feeding trial demonstrated significantly improved (P < 0.05) growth performance and hepatosomatic and viscerosomatic indices of fish fed S30. Blood chemical profile also indicated desirable values in fish fed A. platensis diets as compared to fish fed S0. On the contrary, fish fed S75 exhibited significantly reduced fish growth. Blood chemical analysis showed significant difference (P < 0.05) in levels of plasma triglyceride. Results of the present work indicate that 30 % A. platensis inclusion is deemed the optimal level of dietary replacement for increased growth performance, improved feed utilization efficiency, and enhanced overall health status of Nile tilapia juveniles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdel-Tawwab M, Ahmad MH (2009) Live Spirulina (Arthrospira platensis) as a growth and immunity promoter for Nile tilapia, Oreochromis niloticus (L.), challenged with pathogenic Aeromonas hydrophila. Aquac Res 40:1037–1046

    Article  Google Scholar 

  • Ahamdzade-Nia Y, Adl KN, Hezave SG, Hejazi MA, Hassanpour S, Chaichisemsari M, Riyazi SR (2011) Effect of replacing different levels of Soybean meal with Spirulina on performance in Rainbow Trout. Ann Biol Res 2:374–379

  • Al-Ghais S (2013) Acetylcholinesterase, glutathione and hepatosomatic index as potential biomarkers of sewage pollution and depuration in fish. Mar Pollut Bull 74:183–186

    Article  CAS  PubMed  Google Scholar 

  • Amar EC, Kiron V, Satoh S, Watanabe T (2004) Enhancement of innate immunity in carotenoids from natural products. Fish Shellfish Immun 16:527–537

    Article  CAS  Google Scholar 

  • AOAC International (1996) AOAC official methods of analysis 988.09: gravimetry. Association of Official Analytical Chemists, Arlington

    Google Scholar 

  • Arzel J, Martinez Lopez FX, Métailler R, Stéphan G, Viau M, Gandemer G, Guillaume J (1994) Effect of dietary lipid on growth performance and body composition of brown trout (Salmo trutta) reared in seawater. Aquaculture 123:361–375

    Article  CAS  Google Scholar 

  • Badawy TM, Ibrahim EM, Zeinhom MM (2008) Partial replacement of fish meal with dried microalga (Chlorella spp and Scendesmus spp) in Nile tilapia (Oreochromis niloticus) diets. 8th International Symposium on Tilapia in Aquaculture 2008

  • Becker W (2004) Microalgae for aquaculture: the nutritional value of microalgae for aquaculture. In: Richmond A (ed) Handbook of microalgal culture: biotechnology and applied phycology. Blackwell, Oxford, pp 380–391

    Google Scholar 

  • Becker EW (2007) Micro-algae as a source of protein. Biotechnol Adv 25:207–210

    Article  CAS  PubMed  Google Scholar 

  • Benedito-Palos L, Bermejo-Nogales A, Karampatos A, Ballester-Lozano G, Navarro J, Diez A, Bautista J, Bell G, Tocher D, Obach A, Kaushik S, Pérez Sánchez J (2007) Modelling the predictable effects of dietary lipid sources on the fillet fatty acid composition of one-year-old gilthead sea bream (Sparus aurata L.). Aquaculture 288:98–105

    Article  Google Scholar 

  • Borowitzka MA (1997) Microalgae for aquaculture: opportunities and constraints. J Appl Phycol 9:393–401

    Article  Google Scholar 

  • Chow CY, Woo NYS (1990) Bioenergetics studies on an omnivorous fish Oreochromis mossambicus: evaluation of the utilization of Spirulina platensis algae in feed. In: Hirano R, Hanyu I (eds) Proceeding of the 2nd Asian Fisheries Forum. The Asian Fisheries Society, Manila, pp 291–294

  • Christaki E, Florou-Paneri P, Bonos E (2011) Microalgae: a novel ingredient in nutrition. Int J Food Sci Nutr 62:794–799

    Article  CAS  PubMed  Google Scholar 

  • Dietschy JM (1998) Dietary fatty acids and the regulation of plasma low density lipoprotein cholesterol concentrations. J Nutr 128:444S–448S

    CAS  PubMed  Google Scholar 

  • Duerr EO, Molnar A, Sato V (1998) Cultured microalgae as aquaculture feeds. J Mar Biotechnol 6:65–70

    Google Scholar 

  • Ekpo I, Bender J (1989) Digestibility of a commercial fish feed, wet algae, and dried algae by Tilapia nilotica and silver carp. Prog Fish Cult 51:83–86

    Article  Google Scholar 

  • Ergün S, Soyutürk M, Güroy B, Güroy D, Merrifield D (2009) Influence of Ulva meal on growth, feed utilization, and body composition of juvenile Nile tilapia (Oreochromis niloticus) at two levels of dietary lipid. Aquacult Int 17:355–361

    Article  Google Scholar 

  • Espe M, Sveier H, Høgøy I, Lied E (1999) Nutrient absorption and growth of Atlantic salmon (Salmo salar) fed fish protein concentrate. Aquaculture 174:119–137

    Article  CAS  Google Scholar 

  • FAO/WHO (1973) Energy and protein requirement, 52nd edn. FAO, Geneva

    Google Scholar 

  • Fernandez ML, West KL (2005) Mechanisms by which dietary fatty acids modulate plasma lipids. J Nutr 135:2075–2078

    CAS  PubMed  Google Scholar 

  • Fleurence J, Morancais M, Dumay J, Decottignies P, Turpin V, Munier M, Garcia-Bueno N, Jaouen P (2012) What are the prospects for using seaweed in human nutrition and for marine animals raised through aquaculture? Trends Food Sci Technol 27:57–61

    Article  CAS  Google Scholar 

  • Getachew T (1987) A study on an herbivorous fish, Oreochromis niloticus L., diet and its quality in two Ethiopian River Valley lakes, Awasa and Zwai. J Fish Biol 30:439–449

    Article  Google Scholar 

  • Gomes LC, Baldisserotto B, Chagas EC, Roubach R, Brinn RP, Coppati CE (2006) Use of the salt during transportation of air breathing pirarucu juveniles (Arapaima gigas) in plastic bags. Aquaculture 256:521–528

    Article  CAS  Google Scholar 

  • Guedes AC, Amaro HM, Malcata FX (2011) Microalgae as sources of high added-value compound sea brief review of recent work. Biotechnol Progr 27:597–613

    Article  CAS  Google Scholar 

  • Guzman S, Gato A, Lamela M, Freire-Garabal M, Calleja JM (2003) Anti-inflammatory and immunomodulatory activities of polysaccharide from Chlorella stigmatophora and Phaeodactylum tricomutum. Phytother Res 17:665–670

    Article  CAS  PubMed  Google Scholar 

  • Habib MAB, Parvin M, Huntington TC, Hasan MR (2008) A review on culture, production and use of Spirulina as food for humans and feeds for domestic animals and fish. FAO Fisheries and Aquaculture Circular, No. 1034. FAO, Rome, p 33

    Google Scholar 

  • Henson R (1990) Spirulina improves Japanese fish feeds. Aquaculture Magazine. November/December, 38

  • Hernández-Sánchez F, Aguilera-Morales M (2012) Nutritional richness and importance of the consumption of tilapia in the Papaloapan Region. Redvet 13(6):1–12

    Google Scholar 

  • Hirahashi T, Matsumoto M, Hazeki K, Sacki Y, Ui M, Seya T (2002) Activation of the human innate immune system by Spirulina: augmentation of interferon production and NK cytotoxicity by oral administration of hot water extract of Spirulina platensis. Int Immunopharmacol 2:423–434

    Article  CAS  PubMed  Google Scholar 

  • Hussein EE-S, Dabrowski K, El-Saidy DMSD, Lee BJ (2013) Enhancing the growth of Nile tilapia larvae/juveniles by replacing plant (gluten protein with algae protein. Aquac Res 44:937–949

    Article  CAS  Google Scholar 

  • Ibrahem MD, Mohamed F, Ibrahim MA (2013) The role of Spirulina platensis (Arthrospira platensis) in growth and immunity of Nile tilapia (Oreochromis niloticus) and its resistance to bacterial infection. J Agr Sci. 1916-9752

  • Jaime-Ceballos B, Hernandez-Llamas A, Garcia T, Perez-Jar L, Villareal H (2006) Substitution of Chaetoceros mulleri by Spirulina platensis meal in diets for Litopenaeus schmitti larvae. Aquaculture 266:215–220

    Article  Google Scholar 

  • Kumar M (2011) Can the cultivation of microalgae meet U.S. energy demands? Eos 92(35):296

    Article  Google Scholar 

  • Liao WL, Takeuchi T, Watanabe T, Yamaguchi K (1990) Effect of dietary Spirulina supplementation on the extractive nitrogenous constituents and sensory test of cultured striped jack flesh. J Tokyo Univ Fish 77:241–246

    Google Scholar 

  • Lin YC, Tayag CM, Huang CL, Tsui WC, Chen JC (2010) White shrimp Litopenaeus vannamei that had received the hot-water extract of Spirulina platensis showed earlier recovery in immunity and up-regulation of gene expressions after pH stress. Fish Shellfish Immun 29:1092–1098

    Article  CAS  Google Scholar 

  • Mamauag REP, Gao J, Nguyen BT, Ragaza JA, Koshio S, Ishikawa M, Yokoyama S (2012) Supplementations of dl-methionine and methionine dipeptide in diets are effective for the development and growth of larvae and juvenile red sea bream, Pagrus major. J World Aquacult Soc 43:362–374

    Article  Google Scholar 

  • Millamena OM, Coloso RM, Pascual FP (2002) Nutrition in tropical aquaculture. Essentials of fish nutrition, feeds, and feeding of tropical aquatic species. SEAFDEC, Iloilo

    Google Scholar 

  • Miranda JR, Passarinho PC, Gouveia L (2012) Pre-treatment optimization of Scenedesmus obliquus microalga for bioethanol production. Bioresour Technol 104:342–348

    Article  CAS  PubMed  Google Scholar 

  • Monje PM, Dizon MP, Divina CC (1996) The effect of different levels of vitamins premix in the diet of African catfish (Clarias gariepinus) fingerlings. In: Santiago CB, Coloso RM, Millamena OM, Borlongan IG (eds) Feeds for Small-Scale Aquaculture Proceedings of the National Seminar-Workshop on Fish Nutrition and Feeds Tigbauan. SEAFDEC Aquaculture Department, Iloilo, pp 94–99

    Google Scholar 

  • Moreira LM, Rocha ASR, Ribeiro CLG, Rodrigues RS, Soares LAS (2011) Nutritional evaluation of single-cell protein produced by Spirulina platensis. Afr J Food Sci 5:799–805

    CAS  Google Scholar 

  • Morris HJ, Carrillo O, Almarales A, Bermudez RC, Lebeque Y, Fontaine R (2007) Immunostimulant activity of an enzymatic protein hydrolysate from green microalga Chlorella vulgaris on undernourished mice. Enzyme Microb Tech 40:456–460

    Article  CAS  Google Scholar 

  • Mustafa MG, Nakagawa H (1995) A review: dietary benefits of algae as an additive in fish feed. Isr J Aquacult 47:155–162

    Google Scholar 

  • Mustafa MG, Takeda T, Umino T, Wakamatsu T, Nakagawa H (1994) Effects of Ascophyllum and Spirulina meal as feed additives on growth performance and feed utilization of red sea bream, Pagrus major. J Fac Appl Biol Sci Hiroshima Univ 33:125–132

    CAS  Google Scholar 

  • Nakagawa H (1997) Effect of dietary algae on improvement of lipid metabolism in fish. Biomed Pharmocother 51:345–348

    Article  CAS  Google Scholar 

  • Nandeesha MC, Gangadhara B, Varghese TJ, Keshavanath P (1998) Effect of feeding Spirulina platensis on the growth, proximate composition and organoleptic quality of common carp, Cyprinus carpio. Aquac Res 29:305–312

    Article  Google Scholar 

  • National Research Council NRC (2011) Nutrient requirement of fish and shrimps. National Academy Press, Washington

    Google Scholar 

  • Northcott MAM, Beveridge MCM, Ross LG (1991) A laboratory investigation of the filtration and ingestion rates of tilapia, Oreochromis niloticus. Environ Biol Fish 31:75–85

    Article  Google Scholar 

  • Olvera-Novoa MA, Dominguez-Cen JL, Olivera-Castillo L (1998) Effect of the use of the microalga Spirulina maxima as fish meal replacement in diets for tilapia, Oreochromis mossambicus (Peters), fry. Aquac Res 29:709–715

    Article  Google Scholar 

  • Ortuno JF, Saez J, Llorens M, Soler A (2000) Phosphorus release from sediments of a deep wastewater stabilization pond. Wat Sci Technol 42:265–272

    CAS  Google Scholar 

  • Parker R, Parker RO (2011) Aquaculture science. Delmar Cengage Learning, New York, pp 123–128

    Google Scholar 

  • Peng S, Chen L, Qin JG, Hou J, Na Y, Long Z, Ye J, Sun X (2008) Effects of replacement of dietary fish oil by soybean oil on growth performance and liver biochemical composition in juvenile black seabream, Acanthopagrus schlegeli. Aquaculture 276:154–161

    Article  CAS  Google Scholar 

  • Pradhan J (2011) Traditional antibacterial activity of freshwater microalga Spirulina platensis to aquatic pathogens. Aquac Res 43:1287–1295

    Article  Google Scholar 

  • Puangkaew J, Kiron V, Somamoto T, Okamoto N, Satoh S, Takeuchi T (2004) Nonspecific immune response of rainbow trout (Oncorhynchus mykiss Walbaum) in relation to different status of vitamin E and highly unsaturated fatty acids. Fish Shellfish Immunol 16:25–39

    Article  CAS  PubMed  Google Scholar 

  • Ragaza JA, Koshio S, Mamauag RE, Ishikawa M, Yokoyama S, Villamor SS (2015) Dietary supplemental effects of red seaweed Eucheuma denticulatum on growth performance, carcass composition an blood chemistry of juvenile Japanese flounder, Paralichthys olivaceus. Aquac Res 46:647–657

    Article  CAS  Google Scholar 

  • Rahnema S, Borton R (2007) Determination of the effects of fish vs plant feather-meal-based diets on the growth and health of rainbow trout. J Appl Anim Res 32:113–117

    Article  CAS  Google Scholar 

  • Regost C, Arzel J, Robin J, Rosenlund G, Kaushik S (2003) Total replacement of fish oil in turbot (Psetta maxima)-1. Growth performance, flesh fatty acid profile, and lipid metabolism. Aquaculture 217:465–482

    Article  CAS  Google Scholar 

  • Reyes-Becerril M, Guardiola F, Rojas M, Ascencio-Valle F, Esteban MA (2013) Dietary administration of microalgae Navicula sp affects immune status and gene expression of gilthead seabream (Sparus aurata). Fish Shellfish Immunol 35:883–889

    Article  CAS  PubMed  Google Scholar 

  • Richard N, Kaushik S, Larroquet L, Panserat S, Corraze G (2006) Replacing dietary fish oil by vegetable oils has little effect on lipogenesis, lipid transport and tissue lipid uptake in rainbow trout (Oncorhynchus mykiss). Brit J Nutr 96:299–309

    Article  CAS  PubMed  Google Scholar 

  • Roohi Z, Imanpoor MR (2015) The efficacy of the oils of spearmint and methyl salicylate as new anesthetics and their effect on glucose levels in common carp (Cyprinus carpio L., 1958) juveniles. Aquaculture 437:327–332

    Article  CAS  Google Scholar 

  • Sakaguchi M, Hujita M, Simidu W (1964) Studies on muscle of aquatic animals-XXXXIII. Creatine and creatinine contents in fish muscle extractives. Bull Jpn Soc Sci Fish 30:999–1002

    Article  CAS  Google Scholar 

  • Sergejevova M, Masojidek J (2011) Chlorella biomass as feed supplement for freshwater fish: sterlet, Acipenser ruthenus. Aquac Res 44:157–159

    Article  Google Scholar 

  • Tayag CM, Lin YC, Li CC, Liou CH, Chen JC (2010) Administration of the hot-water extract of Spirulina platensis enhanced the immune response of white shrimp Litopenaeus vannamei and its resistance against Vibrio alginolyticus. Fish Shellfish Immunol 28:764–773

    Article  PubMed  Google Scholar 

  • Teimouri M, Amirkolaie AK, Yeganeh S (2013) The effects of Spirulina platensis meal as a feed supplement on growth performance and pigmentation of rainbow trout (Oncorhynchus mykiss). Aquaculture 396–399:14–19

    Article  Google Scholar 

  • Tulli F, Chini Zitelli G, Giorgi G, Poli BM, Tibaldi M, Tredici MR (2012) Effect of the inclusion of dried Tetraselmis suecica on growth, feed utilization, and fillet composition of European sea bass juveniles fed organic diets. J Aquat Food Prod Tech 21:1–11

    Article  Google Scholar 

  • Watanabe T, Liao W, Takeuchi T, Yamamoto H (1990) Effect of dietary Spirulina supplementation on growth performance and flesh lipids of cultured striped jack. J Tokyo Univ Fish 77:231–239

    Google Scholar 

  • Watanuki H, Ota K, Malina AC, Tassakka AR, Kato T, Sakai M (2006) Immunostimulant effects of dietary Spirulina platensis on carp, Cyprinus carpio. Aquaculture 258:157–163

    Article  Google Scholar 

  • Zatkova I, Sergejevova M, Urban J, Vachta R, Stys D, Masojidek J (2011) Carotenoid- enriched microalgal biomass as feed supplement for freshwater ornamentals: albinic form of wels catfish (Silurus glanis). Aquacult Nutr 17:278–286

    Article  CAS  Google Scholar 

Download references

Acknowledgments

S.F. Velasquez is grateful to the Department of Science and Technology-Accelerated Science and Technology Human Research and Development Program for the scholarship and funding. The research was partially funded by the University Research Council Grant (Grant No. 14-05) of the Ateneo de Manila University under Dr. J.A. Ragaza. Sincerest appreciations are credited to Mr. Edwin B. Palenzuela for constructing the recirculation setup used in the feeding trial and to Ms. Sherilyn T. Abarra for her assistance during the termination of the experiment.

Guidelines on the proper fish care and use were considered and followed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janice A. Ragaza.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Velasquez, S.F., Chan, M.A., Abisado, R.G. et al. Dietary Spirulina (Arthrospira platensis) replacement enhances performance of juvenile Nile tilapia (Oreochromis niloticus). J Appl Phycol 28, 1023–1030 (2016). https://doi.org/10.1007/s10811-015-0661-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-015-0661-y

Keywords

Navigation