Skip to main content
Log in

Electrochemical oxidation of an acid dye by active chlorine generated using Ti/Sn(1−x)Ir x O2 electrodes

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The generation of active chlorine on Ti/Sn(1−x)Ir x O2 anodes, with different compositions of Ir (x = 0.01, 0.05, 0.10 and 0.30 ), was investigated by controlled current density electrolysis. Using a low concentration of chloride ions (0.05 mol L−1) and a low current density (5 mA cm−2) it was possible to produce up to 60 mg L−1 of active chlorine on a Ti/Sn0.99Ir0.01O2 anode. The feasibility of the discoloration of a textile acid azo dye, acid red 29 dye (C.I. 16570), was also investigated with in situ electrogenerated active chlorine on Ti/Sn(1−x)Ir x O2 anodes. The best conditions for 100% discoloration and maximum degradation (70% TOC reduction) were found to be: NaCl pH 4, 25 mA cm−2 and 6 h of electrolysis. It is suggested that active chlorine generation and/or powerful oxidants such as chlorine radicals and hydroxyl radicals are responsible for promoting faster dye degradation. Rate constants calculated from color decay versus time reveal a zero order reaction at dye concentrations up to 1.0 × 10−4 mol L−1. Effects of other electrolytes, dye concentration and applied density currents also have been investigated and are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Brasil (2004) Portaria 518, Ministério da Saúde, issued in 03/25/2004 and published in DOU Executivo in 03/26/2004

  2. Xie YF (2004) Disinfection byproducts in drinking water, formation, analysis and control. CRC Press LLC

  3. Burney HS (1993) In: White RE, Conway BE, Bockris JOM (eds) Modern aspects in electrochemistry. Plenum Press, New York, p 393

    Google Scholar 

  4. Rudolf M, Rousar I, Krysa J (1995) J Appl Electrochem 25:155

    Article  CAS  Google Scholar 

  5. Rengarajan V, Sozhan G, Narasimham KC (1996) Bull Electrochem 12:327

    CAS  Google Scholar 

  6. Casson LW, Bess JW Jr (2003) Conversion to on-site sodium hypochlorite generation, water and wastewater application. CRC Press LLC

  7. Kraft A, Stadelmann M, Blaschke M, Kreysig D, Sandt B, Schroder F, Rennan J (1999) J Appl Electrochem 29:861

    CAS  Google Scholar 

  8. Kraft A, Blaschke M, Kreysig D, Sandt B, Schroder F, Rennan J (1990) J Appl Electrochem 29:895

    Article  Google Scholar 

  9. Patermarakis G, Fountoukidis E (1990) Water Res 24:1491

    Article  CAS  Google Scholar 

  10. Schoberl M (1991) Eur Pat EP 0 515 628 B1

  11. Kanekuni N, Shono N, Kyohara M, Tabata K, Kono S, Hayakawa M (1995) Eur Pat Appl EP 0 711 730 AL

  12. Ibl N, Vogt H (1981) In: Bockris JOM, Conway BE, Yeager E, White RE (eds) Comprehensive treatise of electrochemistry, vol 2. Plenum Press, New York, p 167

    Google Scholar 

  13. Bennett JE (1974) Chem Eng Prog 70:60

    CAS  Google Scholar 

  14. Arikado T, Iwakura C, Tamura H (1978) Electrochim Acta 23:9

    Article  CAS  Google Scholar 

  15. Harrison JA, Hermijanto AD (1987) J Electroanal Chem 225:159

    Article  CAS  Google Scholar 

  16. Do JS, Yeah WC (1995) J Appl Electrochem 251:483

    Google Scholar 

  17. Czarnetzki LR, Janssen LJJ (1992) J Appl Electrochem 22:315

    Article  CAS  Google Scholar 

  18. Do JS, Yeah WC, Chao IYa (1997) Ind Eng Chem Res 36:349

    Article  CAS  Google Scholar 

  19. Rudolf M, Rousar I, Krysa J (1995) J Appl Electrochem 25:155

    Article  CAS  Google Scholar 

  20. Trasatti S (1984) Electrochim Acta 29:1503

    Article  CAS  Google Scholar 

  21. Mozota J, Conway BE (1991) J Electrochem Soc 128:2142

    Article  Google Scholar 

  22. Snoeyink VL, Jenkins D (1980) Water chemistry. John Wiley & Sons, New York, p 386

  23. Stum W, Morgan JJ (1996) Aquatic chemistry, 3rd edn. John Wiley & Sons, New York, Chap. 8, p 490

  24. Callaway JO (1989) In: Clesceri LS, Greenberg AE, Trussel RR (eds) Standard methods for the examination of water and wastewater, 17th edn. Alpha Awwa-WPCF, Washington, DC, Part 4000, p 62

    Google Scholar 

  25. Spyrkowicz L, Kaul SN, Neti RN, Satyanarayan S (2005) Water Res 39:1601

    Article  CAS  Google Scholar 

  26. Spyrkowicz L, Radaelli M, Daniele S (2005) Catal Today 100:425

    Google Scholar 

  27. Vlyssides AG, Loizidou M, Karis PK, Zorpas AA, Papaioannou D (1999) J Hazard Mater B70:41

    Article  Google Scholar 

  28. Comninellis Ch, Pulgarin C (1993) J Appl Electrochem 23:108

    Article  CAS  Google Scholar 

  29. Comninellis Ch (1994) Electrochim Acta 39:1857

    Article  CAS  Google Scholar 

  30. Fugivara PTA, Cardoso AA, Benedetti AV (1996) Analyst 121:541

    Article  CAS  Google Scholar 

  31. Iwakura C, Sakamoto K (1985) J Electrochem Soc 132:2420

    Article  CAS  Google Scholar 

  32. Carneiro PA, Osugi ME, Fugivara CS, Borale N, Zanoni MVB (2005) Chemosphere 59:431

    Article  CAS  Google Scholar 

  33. Hepel M, Luo J (2001) Electrochim Acta 47:729

    Article  CAS  Google Scholar 

  34. Zollinger H (1991) Color chemistry: syntheses, properties and applications of organic dyes and pigments, 2nd edn. V.C.H. Publishers, New York

    Google Scholar 

  35. Forti JC, Olivi P, Andrade AR (2004) J Electrochemical Soc 150:E222

    Article  CAS  Google Scholar 

  36. Ortiz PI, De Pauli CP, Trasatti S (2004) J New Mater Electrochem Syst 7:153

    CAS  Google Scholar 

  37. Vogel AI (1995) Qualitative analytical chemistry, 5th edn. Mestre Jou Publishers, São Paulo, p 419

    Google Scholar 

  38. Cachet H, Zenia F, Froment M (1999) J Electrochem Soc 146:977

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Walt Zeltner of the University of Wisconsin for English language revision of this paper and acknoledge financial support from Brazilian funding agencies CAPES, CNPq and FAPESP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Valnice Boldrin Zanoni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oliveira, F.H., Osugi, M.E., Paschoal, F.M.M. et al. Electrochemical oxidation of an acid dye by active chlorine generated using Ti/Sn(1−x)Ir x O2 electrodes. J Appl Electrochem 37, 583–592 (2007). https://doi.org/10.1007/s10800-006-9289-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-006-9289-6

Keywords

Navigation