Skip to main content
Log in

In vitro antifungal effects of potassium bicarbonate on Trichoderma sp. and Sclerotinia sclerotiorum

  • Full Paper
  • Published:
Mycoscience

Abstract

Bicarbonates are often utilized in the food industry to avoid fermentation and to improve pH, flavor, and texture. In the same manner, bicarbonates have been demonstrated to control postharvest phytopathogens; however, there are no reports describing the effects of these chemical compounds either on soil-borne pathogens such as Sclerotinia sclerotiorum or on antagonist fungi such as Trichoderma species. This study evaluated the antifungal effect of increasing concentrations (0, 2, 4, 6, 8, 10, 25, and 50 mM) of potassium bicarbonate (KHCO3) on the growth of Trichoderma sp. strain R39 and S. sclerotiorum under in vitro systems. Applications of KHCO3 greater than 8 mM significantly inhibited (P < 0.001) the growth of both fungi. Concentrations of KHCO3 lower than 25 mM did not affect the antagonistic effect of Trichoderma on the growth of S. sclerotiorum; however, this fungal interaction was not observed when exposed to 50 mM KHCO3 because of its strong inhibition of fungal growth. In addition, KHCO3 concentrations higher than 8 mM caused significant (P < 0.001) reduction of the sclerotium formation of S. sclerotiorum. Sclerotium germination and de novo sclerotium formation were significantly (P < 0.001) inhibited as the concentrations of KHCO3 increased. Results show the potential benefits of potassium bicarbonate for controlling both growth and development of S. sclerotiorum, although it also exerts negative effects on the Trichoderma strain that is a natural antagonist to S. sclerotiorum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdullah MT, Ali NY, Suleman P (2008) Biological control of Sclerotinia sclerotiorum (Lib.) de Bary with Trichoderma harzianum and Bacillus amyloliquefaciens. Crop Protect 27:1354–1359

    Article  Google Scholar 

  • Aharoni Y, Fallik E, Copel A, Gil M, Grinberg S, Klein JD (1997) Sodium bicarbonate reduces postharvest decay development on melons. Postharv Biol Technol 10:201–206

    Article  CAS  Google Scholar 

  • Alexander M (1977) Introduction to soil microbiology, 2nd edn. Wiley, New York

    Google Scholar 

  • Arslan U, Ilhan K, Karabulut OA (2006) Evaluation of food additives and low-toxicity compounds for the control of bean rust and wheat leaf rust. Phytopathology 154:543–541

    Google Scholar 

  • Bae YS, Knudsen GR (2007) Effect of sclerotial distribution pattern of Sclerotinia sclerotiorum on biocontrol efficacy of Trichoderma harzianum. Appl Soil Ecol 35:21–24

    Article  Google Scholar 

  • Benítez T, Rincón AM, Limón MC, Codón AC (2004) Biocontrol mechanisms of Trichoderma strains. Int Microbiol 7:249–260

    PubMed  Google Scholar 

  • Bolton MD, Thomma BPHJ, Nelson BD (2006) Sclerotinia sclerotiorum (Lib.) de Bary: biology and molecular traits of a cosmopolitan pathogen. Mol Plant Pathol 7:1–16

    Article  CAS  Google Scholar 

  • Bombelli EC, Wright ER (2006) Efecto del bicarbonato de potasio sobre la calidad del tomate y acción sobre Botrytis cinerea en postcosecha (in Spanish). Cienc Invas Agric 33:197–203

    Google Scholar 

  • Chen C, Harel A, Gorovoits R, Yarden O, Dickman MB (2004) MAPK regulation of sclerotial development in Sclerotinia sclerotiorum in linked with pH and cAMP sensing. Mol Plant-Microbe Interact 17: 404–413

    Article  PubMed  CAS  Google Scholar 

  • Corrêa S, Mello M, Ávila ZR, Braúna LM, Pádua RR, Gomes D (2007) Cepas de Trichoderma spp. para el control biológico de Sclerotinia rolfsii Sacc. (in Spanish). Fitosanidad 11:3–9

    Google Scholar 

  • Durman SB, Menendez AB, Godeas AM (2005) Variation in oxalic acid production and mycelial compatibility within field populations of Sclerotinia sclerotiorum. Soil Biol Biochem 37:2180–2184

    Article  CAS  Google Scholar 

  • Ezziyyani M, Pérez C, Ahmed AS, Requena ME, Candela ME (2004) Trichoderma harzianum como biofungicida para el biocontrol de Phytophthora capsici en plantas de pimiento (Capsicum annuum L.) (in Spanish). An Biol 26:35–45

    Google Scholar 

  • Fallik E, Ziv O, Grinberg S, Alkalai S, Klein JD (1997) Bicarbonate solutions control powdery mildew (Leveillula taurica) on sweet red pepper and reduce the development of postharvest fruit rotting. Phytoparasitica 25:41–43

    Article  Google Scholar 

  • Fernando WGD, Nakkeeran S, Zhang Y (2004) Ecofriendly methods in combating Sclerotinia sclerotiorum (Lib.) de Bary. Recent Res Dev Environ Biol 1:329–347

    Google Scholar 

  • Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004) Trichoderma species opportunistic, avirulent plant symbionts. Microbiology 2:43–56

    PubMed  CAS  Google Scholar 

  • Hegedus DD, Rimmer SR (2005) Sclerotinia sclerotiorum: when “to be or no to be” a pathogen? FEMS Microbiol Lett 251:177–18

    Article  PubMed  CAS  Google Scholar 

  • Howell CR (2003) Mechanisms employed by Trichoderma species in the biological control of plant diseases: the history and evolution of current concepts. Plant Dis 87:4–10

    Article  Google Scholar 

  • Ibarra-Medina VA (2008) Isolation and selection of Trichoderma strains for the biological control of Sclerotinia sclerotiorum (Lib.) de Bary and Sclerotinia minor Jagger (in Spanish). Thesis (Master Degree) Colegio de Postgraduados, Montecillo, Estado de México

    Google Scholar 

  • Karabulut OA, Smilanick JL, Gabler FM, Mansour M, Droby S (2003) Near-harvest applications of Metschnikowia fructicola, ethanol, and sodium bicarbonate to control postharvest diseases of grape in central California. Plant Dis 87:1384–1389

    Article  CAS  Google Scholar 

  • Mónaco CI, Rollán MC, Nico AI (1998) Efecto de micoparásitos sobre la capacidad reproductiva de Sclerotinia sclerotiorum (in Spanish). Rev Iberoam Micol 15:81–84

    PubMed  Google Scholar 

  • Olivier C, Halseth ED, Mizubuti ESG, Loria R (1998) Postharvest application of organic and inorganic salts for suppression of silver scurf on potato tubers. Plant Dis 82:213–217

    Article  CAS  Google Scholar 

  • Palmer CL, Horst RK, Langhans RW (1997) Use of bicarbonates to inhibit in vitro colony growth of Botrytis cinerea. Plant Dis 81: 1432–1438

    Article  Google Scholar 

  • Palou L, Smilanick JL, Usall J, Viñas I (2001) Control of postharvest blue and green molds of oranges by hot water, sodium carbonate, and sodium bicarbonate. Plant Dis 85:371–376

    Article  Google Scholar 

  • Punja ZK, Grogan RG (1982) Effects of inorganic salts, carbonate-bicarbonate anions, ammonia, and the modifying influence of pH on sclerotial germination of Sclerotiorum rolfsii. Phytopathology 72: 635–639

    Article  CAS  Google Scholar 

  • Reyes RT, Rodríguez GG, Pupo ZAD, Alarcón PL, Limonta CY (2007) Efectividad in vitro de Trichoderma harzianum Rifai para el biocontrol de Rhizoctonia solani Kühn y Pyricularia grisea Sacc. aislados en el cultivo del arroz (Oryza sativa L.) (in Spanish). Fitosanidad 11:29–33

    Google Scholar 

  • Rollins JA, Dickman MB (2001) pH signaling in Sclerotinia sclerotiorum: identification of a pacC/RIM1 homolog. Appl Environ Microbiol 67:75–81

    Article  PubMed  CAS  Google Scholar 

  • Smilanick JL, Margosan DA, Mlikota F, Usall J, Michael IF (1999) Control of citrus green mold by carbonate and bicarbonate salts and the influence of commercial postharvest practices on their efficacy. Plant Dis 83:139–145

    Article  CAS  Google Scholar 

  • USEPA (United States Environmental Protection Agency) (1998) Technical amendments to sodium bicarbonate and potassium bicarbonate, tolerance exemptions: correction of effective date under congressional review act (CRA) final rule. Fed Reg 63:417–418

    Google Scholar 

  • Wu BM, Subbarao KV (2006) Analyses of lettuce drop incidence and population structure of Sclerotinia sclerotiorum and S. minor. Phytopathology 96:1322–1329

    Article  PubMed  CAS  Google Scholar 

  • Zago EL, Zago C, Ferreira AC (2001) Seleção de Trichoderma spp. visando ao controle de Sclerotinia sclerotiorum, in vitro (in Portuguese). Ciênc Rural 31:885–887

    Google Scholar 

  • Zavaleta-Mejia E (1999) Alternatives for plant disease management (in Spanish). Terra 17:201–207

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro Alarcón.

About this article

Cite this article

Ordóñez-Valencia, C., Alarcón, A., Ferrera-Cerrato, R. et al. In vitro antifungal effects of potassium bicarbonate on Trichoderma sp. and Sclerotinia sclerotiorum . Mycoscience 50, 380–387 (2009). https://doi.org/10.1007/s10267-009-0495-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10267-009-0495-z

Key words

Navigation