Skip to main content
Log in

Extracellular lipase from Pseudomonas aeruginosa JCM5962(T): Isolation, identification, and characterization

  • Original Article
  • Published:
International Microbiology Aims and scope Submit manuscript

Abstract

The study was done to isolate, identify, and characterize a good lipolytic strain from soil. Lipolytic strain isolation was done using tributyrin agar medium. The biochemical testing and 16S rRNA gene sequencing analysis was done for identification. The enzyme was purified using ammonium sulfate precipitation and column chromatography. Results have shown a novel high lipolytic strain of P. aeruginosa JCM5962(T), isolated from soil of sugarcane field. The 16S rRNA sequence analysis confirmed the strain as P. aeruginosa JCM5962(T); further, the sequence was submitted to Genbank (KX946966.1). The isolate produced an extracellular lipase which was purified as single band of 31 kDa. Maximum lipase activity was observed at 50 °C and pH 8.0. Activity was enhanced in the presence of cobalt and benzene solvent, whereas mercury, sodium dodecyl sulfate, and chloroform inhibited it. The enzyme’s marked stability and activity at high temperature, alkaline pH and organic solvents suggest that this can be effectively used in a variety of applications in industries and as biotechnological tools.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahmed EH, Raghavendra T, Madamwar D (2010) A thermostable alkaline lipase from a local isolate Bacillus subtilis EH 37: characterization, partial purification and application in organic synthesis. Appl Biochem Biotechnol 160(7):2102–2113

    Article  CAS  PubMed  Google Scholar 

  • Anbu P, Hur BK (2014) Isolation of an organic solvent-tolerant bacterium Bacillus licheniformis PAL05 that is able to secrete solvent-stable lipase. Biotechnol Appl Biochem 61(5):528–534

    Article  CAS  PubMed  Google Scholar 

  • Arpigny JL, Jaeger KE (1999) Bacterial lipolytic enzymes: classification and properties. Biochem J 343:177–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bisht D, Yadav SK, Gautam P, Darmwal NS (2013) Simultaneous production of alkaline lipase and protease by antibiotic and heavy metal tolerant Pseudomonas aeruginosa. J Basic Microbiol 53(9):715–722

    Article  CAS  PubMed  Google Scholar 

  • Bisht D, Yadav SK, Darmwal NS (2014) An oxidant and organic solvent tolerant alkaline lipase by P. aeruginosa mutant: downstream processing and biochemical characterization. Braz J Microbiol 44(4):1305–1314

    Article  PubMed  PubMed Central  Google Scholar 

  • Boonsinthai B, Phutraku S (1999) Effect of metal ions, inhibitors and denaturants on extracellular lipases from three thermophile isolates and their clones. Chiang Mai J Sci 26(1):25–43

    Google Scholar 

  • Collee JG, Fraser AG, Marmion BP, Simmons A, Mackie MC (1996) Practical medical microbiology, 14th edn. Churchill Livingstone, London

    Google Scholar 

  • Davis BJ (1964) Disc electrophoresis II. Method and application to human serum proteins. Ann N Y Acad Sci 121:321–349

    Google Scholar 

  • Davranov K (1994) Microbial lipases in biotechnology (review). Appl Biochem Microbiol 30:427–432

    Google Scholar 

  • Demain AL (2000) Microbial biotechnology. Trends Biotechnol 18:26–31

    Article  CAS  PubMed  Google Scholar 

  • Ghori MI, Iqbal MJ, Hameed A (2011) Characterization of a novel lipase from Bacillus sp. isolated from tannery wastes. Braz J Microbiol 42(1):22–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gokbulut AA, Arslanoglu A (2013) Purification and biochemical characterization of an extracellular lipase from psychrotolerant Pseudomonas fluorescens KE38. Turk J Biol 37:538–546

    Article  CAS  Google Scholar 

  • Guncheva M, Zhiryakova D (2011) Catalytic properties and potential applications of Bacillus lipases. J Mol Catal B Enzym 68(1):1–21

    Article  CAS  Google Scholar 

  • Guncheva M, Tashev E, Zhiryakova D, Tosheva T, Tzokova N (2011) Immobilization of lipase from Candida rugosa on novel phosphorous-containing polyurethanes: application in wax ester synthesis. Process Biochem 46(4):923–930

    Article  CAS  Google Scholar 

  • Gupta R, Gupta N, Rathi P (2004) Bacterial lipases: an overview of production, purification and biotechnological properties. Appl Microbiol Biotechnol 64:763–781

    Article  CAS  PubMed  Google Scholar 

  • Gupta A, Joseph B, Mani A, Thomas G (2008) Biosynthesis and properties of an extracellular thermostable serine alkaline protease from Virgibacillus pantothenticus. World J Microbiol Biotechnol 24:237–243

    Article  CAS  Google Scholar 

  • Hasan F, Shah AA, Hameed A (2006) Industrial applications of microbial lipases. Enzym Microb Technol 39:235–251

    Article  CAS  Google Scholar 

  • Jaeger KE, Eggert T (2002) Lipases for biotechnology. Curr Opin Biotechnol 13(4):390–397

    Article  CAS  PubMed  Google Scholar 

  • Ji Q, Xiao S, He B, Liu X (2010) Purification and characterization of an organic solvent-tolerant lipase from Pseudomonas aeruginosa LX1 and its application for biodiesel production. J Mol Catal B Enzym 66:264–269

    Article  CAS  Google Scholar 

  • Kakugawa K, Shobayashi M, Suzuki O, Miyakawa T (2002) Purification and characterization of a lipase from the glycolipid-producing yeast Kurtzmanomyces sp. I-11. Biosci Biotechnol Biochem 66(5):978–985

    Article  CAS  PubMed  Google Scholar 

  • Kanderi DK, Yadav U, Satyanarayana SV, Verma S (2014) Characterization of partially purified lipase from Saccharomyces cerevisiae. Int J Pharm Pharm Sci 6(8):514–517

    Google Scholar 

  • Karadzic I, Masui A, Zivkovic LI, Fujiwara N (2006) Purification and characterization of an alkaline lipase from Pseudomonas aeruginosa isolated from putrid mineral cutting oil as component of metal working fluid. J Biosci Bioeng 102(2):82–89

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Dhar K, Kanwar SS, Arora PK (2016) Lipase catalysis in organic solvents: advantages and applications. Biol Proced Online 18(2):1–11

    Google Scholar 

  • Martinez A, Soberon CG (2001) Characterization of the lipA gene encoding the major lipase from Pseudomonas aeruginosa strain IGB83. Appl Microbiol Biotechnol 56:731–735

    Article  CAS  PubMed  Google Scholar 

  • Mukke VK, Chinte DN (2012) Impact of heavy metal induced alterations in lipase activity of fresh water crab, Barytelphusa guerini. J Chem Pharm Res 4(5):2763–2766

    CAS  Google Scholar 

  • Nielsen PM, Brask J, Fjerbaek L (2008) Enzymatic biodiesel production: technical and economical considerations. Eur J Lipid Sci Technol 110:692–700

    Article  CAS  Google Scholar 

  • Paje ML, Neilan BA, Couperwhite I (1997) A Rhodococcus species that thrives on medium saturated with liquid benzene. Microbiol 143:2975–2981

    Article  CAS  Google Scholar 

  • Pourahmad JR, Ebadi R (2013) Study the expression of mara gene in ciprofloxacin and tetracycline resistant mutants of Esherichia coli. Iran J Pharm Res 12:923–928

    Google Scholar 

  • Pramanik K, Saren S, Mitra S, Ghosh PK, Maiti TK (2018) Computational elucidation of phylogenetic, structural and functional characteristics of Pseudomonas lipases. Comput Biol Chem 74:190–200

    Article  CAS  PubMed  Google Scholar 

  • Reetz MT (2002) Lipases as practical biocatalysts. Curr Opin Chem Biol 6(2):145–150

    Article  CAS  PubMed  Google Scholar 

  • Romero CM, Pera LM, Loto F, Vallejos C, Castro G, Baigori M (2012) Purification of an organic solvent-tolerant lipase from Aspergillus niger MYA 135 and its application in ester synthesis. Biocatal Agric Biotechnol 1(1):25–31

    Article  CAS  Google Scholar 

  • Sachan S, Singh A (2015) Lipase enzyme and its diverse role in food processing industry. Everyman’s Sci 4:214–218

    Google Scholar 

  • Sachan S, Chandra VY, Yadu A, Singh A (2017) Cobalt has enhancing effect on extracellular lipases isolated from Pseudomonas aeruginosa JCM5962(T). Int J PharmTech Res 10(1):45–49

    Article  CAS  Google Scholar 

  • Saranya P, Kumari HS, Rao BP, Sekaran G (2014) Lipase production from a novel thermo-tolerant and extreme acidophile Bacillus pumilus using palm oil as the substrate and treatment of palm oil-containing wastewater. Environ Sci Pollut Res 21:3907–3919

    Article  CAS  Google Scholar 

  • Schmid RD, Verger R (1998) Lipases: interfacial enzymes with attractive applications. Angew Chem Int Ed Engl 37(12):1608–1633

    Article  PubMed  Google Scholar 

  • Shah KR, Bhatt SA (2011) Purification and characterization of lipase from Bacillus subtilis Pa2. J Biochem Tech 3(3):292–295

    CAS  Google Scholar 

  • Siddiqui KS, Azhar MJ, Rashid MH, Rajoka MI (1997) Stability and identification of active-site residues of carboxym ethyl cellulases from Aspergillus niger and Cellulomonas biazotea. Folia Microbiol (Praha) 42:312–318

    Article  CAS  Google Scholar 

  • Stuer W, Jaeger KE, Winkler U (1986) Purification of extracellular lipase from Pseudomonas aeruginosa. J Bacteriol 168:1070–1074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Svendsen A, Borch K, Barfoed M, Nielsen T, Gormsen E, Patkar S (1995) Biochemical properties of cloned lipases from Pseudomonas family. Biochim Biophys Acta 1259:9–17

    Article  PubMed  Google Scholar 

  • Thakur S (2012) Lipases, its sources, properties and applications: a review. Int J Sci Eng Res 3(7):1–29

    Google Scholar 

  • Tiwari P, Upadhyay MK, Silawat N, Verma HN (2011) Optimization and characterization of a thermo tolerant lipase from Cryptococcus albidus. Der Pharma Chemica 3(4):501–508

    CAS  Google Scholar 

  • Torres S, Castro GR (2003) Organic solvent resistant lipase produced by thermoresistant bacteria. New Horizons Biotechnol, Netherlands: Springer 18(2):113–122

    Article  Google Scholar 

  • Ulker S, Ozel A, Colak A, Karaoglu SA (2011) Isolation, production, and characterization of an extracellular lipase from Trichoderma harzianum isolated from soil. Turk J Biol 35(5):543–550

    CAS  Google Scholar 

  • Verma ML, Azmi W, Kanwar SS (2008) Microbial lipases: at the interface of aqueous and non-aqueous media: a review. Acta Microbiol Immunol Hung 55(3):265–294

    Article  CAS  PubMed  Google Scholar 

  • Zouaoui B, Bouziane A, Ghalem BR (2012) Isolation, purification and properties of lipase from Pseudomonas aeruginosa. Afr J Biotechnol 11(60):12415–12421

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Chairperson, Pro VC, Amity University Lucknow campus and Head, Amity Institute of Biotechnology for providing support and all necessary facilities to conduct the work. Authors are also thankful to IMTECH, Chandigarh, for 16S rRNA sequencing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aditi Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sachan, S., Iqbal, M.S. & Singh, A. Extracellular lipase from Pseudomonas aeruginosa JCM5962(T): Isolation, identification, and characterization. Int Microbiol 21, 197–205 (2018). https://doi.org/10.1007/s10123-018-0016-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10123-018-0016-z

Keywords

Navigation