Skip to main content
Log in

Effect of selenium on lipid alternations in pigment-forming yeasts

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

The work deals with lipid modifications of pigment-forming yeasts Rhodotorula and Sporobolomyces growing under presence of selenium. This metal in the medium significantly prolonged lag-phase of all cultures and enlarged yeast cells. Total, neutral, and membrane yeast lipids (phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, and phosphatidylinositol) consisted of predominantly palmitic, palmitoleic, stearic, oleic, linoleic, and linolenic acids. Selenium activated fatty acid unsaturation mainly in phosphatidylcholine due to elevated levels of linoleic and linolenic acids. Because biosynthesis of C18 unsaturated fatty acids in Rhodotorula and Sporobolomyces species may be associated with phosphatidylcholine moieties, selenium might be involved to the induction of membranebound fatty acid Δ12 and Δ15 desaturases in red yeasts. Oppositely, neutral lipids (primarily triacylglycerols) did not show such intensive changes in fatty acid composition as their polar counterparts. These observations could be applied for preparation of selenized red yeasts containing carotenoid pigments with enhanced accumulation of linoleic and linolenic acids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Navarro-Alarcon M, Cabera-Vique C. Selenium in food and the human body: A review. Sci. Total Environ. 400: 115–141 (2008)

    Article  CAS  Google Scholar 

  2. Tapiero H, Townsend DM, Tew KD. The antioxidant role of selenium and seleno-compounds. Biomed. Pharmacother. 57: 134–144 (2003)

    Article  CAS  Google Scholar 

  3. Wood SM, Beckham C, Yosioka A, Darban H, Watson RR. β-Carotene and selenium supplementation enhances immune response in aged humans. Integr. Med. 2: 85–92 (1999)

    Article  Google Scholar 

  4. Rezanka T, Sigler K. Biologically active compounds of semi-metals. Phytochemistry 69: 585–606 (2008)

    Article  CAS  Google Scholar 

  5. Pedrero Z, Madrid Y. Novel approaches for selenium speciation in foodstuffs, and biological speciments: A review. Anal. Chim. Acta 634: 135–152 (2009)

    Article  CAS  Google Scholar 

  6. Danch A, Chmielowski J. Selenium bio-accumulation in Saccharomyces cerevisiae cells. Acta Biol. Siles. 18: 57–64 (1985)

    Google Scholar 

  7. Pankiewicz U, Jamroz J, Schodzinski A. Optimization of selenium accumulation in Rhodotorula rubra cells by treatment of culturing medium with pulse electric field. Int. Agrophys. 20: 147–152 (2006)

    CAS  Google Scholar 

  8. Yin H, Chen Z, Gu Z, Han Y. Optimization of natural fermentative medium for selenium-enriched yeast by D-optimal mixture design. LWT-Food Sci. Technol. 42: 327–331 (2009)

    Article  CAS  Google Scholar 

  9. Encinar JR, Sliwka-Kaszynska M, Polatajko A, Vacchina V, Szpunar J. Methodological advances for selenium speciation analysis in yeast. Anal. Chim. Acta 500: 171–183 (2003)

    Article  Google Scholar 

  10. Stabnikova O, Ivanov V, Larionova I, Stabnikov V, Bryszewska MA, Lewis J. Ukrainian dietary bakery product with seleniumenriched yeast. LWT-Food Sci. Technol. 41: 890–895 (2008)

    Article  CAS  Google Scholar 

  11. Wang Y-B, Xu B-H. Effect of different selenium source (sodium selenite and selenium yeast) on broiler chickens. Anim. Feed Sci. Tech. 144: 306–314 (2008)

    Article  CAS  Google Scholar 

  12. Juniper DT, Phipps RH, Ramos-Morales EG, Bertin G. Effect of high dose selenium enriched yeast diets on the distribution of total selenium and selenium species within lamb tissues. Livest. Sci. 122: 63–67 (2009)

    Article  Google Scholar 

  13. Czauderna M, Kowalczyk J, Korniluk K. Effect of dietary conjugated linoleic acid and selenized yeast on the concentration of fatty acids and minerals in rats. Arch. Anim. Nutr. 61: 135–150 (2007)

    Article  CAS  Google Scholar 

  14. Breierová E, Gregor T, Márová I, Čertík M, Kogan G. Enhanced antioxidant formula based on a selenium-supplemented carotenoid producing yeast biomass. Chem. Biodivers. 5: 440–446 (2008)

    Article  Google Scholar 

  15. Čertík M, Hanusová V, Breierová E, Márová I, Rapta P. Biotechnological production and properties of carotenoid pigments. pp. 355–375. In: Biocatalysis and Agricultural Biotechnology. Hou CT, Shaw J-F (eds). CRC Press, Inc., Boca Raton, FL, USA (2009)

    Google Scholar 

  16. Breierová E, Čertík M, Kovárová A, Gregor T. Effect of nickel on the yeasts in the osmotic unsuitable environment. Z. Naturforsch. 63: 873–878 (2008)

    Google Scholar 

  17. Čertík M, Breierová E, Juršíková P. Effect of cadmium on lipid composition of Aureobasidium pullulans grown under addition of extracellular polysaccharides. Int. Biodeter. Biodegr. 55: 195–202 (2005)

    Article  Google Scholar 

  18. Čertík M, Andráši P, Šajbidor J. Effect of extraction methods on lipid yield and fatty acid composition of lipid classes containing γ-linolenic acid extracted from fungi. J. Am. Oil Chem. Soc. 73: 357–365 (1996)

    Article  Google Scholar 

  19. Čertík M, Shimizu S. Kinetic analysis of oil biosynthesis by arachidonic acid-producing fungus, Mortierella alpina 1S-4. Appl. Microbiol. Biot. 54: 224–230 (2000)

    Article  Google Scholar 

  20. Christoperson SW, Glass RL. Preparation of milk fat methyl esters by alcoholysis in an essentially nonalcoholic solution. J. Dairy Sci. 52: 1289–1290 (1969)

    Article  Google Scholar 

  21. Čertík M, Sakuradani E, Shimizu S. Desaturase-defective fungal mutants: Useful tools for the regulation and overproduction of polyunsaturated fatty acids. Trends Biotechnol. 16: 500–505 (1998)

    Article  Google Scholar 

  22. Kates M, Pugh EL, Ferrante G. Regulation of membrane fluidity by lipid desaturases. pp. 379–395. In: Membrane Fluidity. Kates M, Manson LA (eds). Plenum Publ. Co., New York, NY, USA (1984)

    Chapter  Google Scholar 

  23. Jackson FM, Fraser TCM, Smith MA, Lazarus C, Stobart AK, Griffiths G. Biosynthesis of C18 polyunsaturated fatty acids in microsomal membrane preparations from the filamentous fungus Mucor circinelloides. Eur. J. Biochem. 252: 513–519 (1998)

    Article  CAS  Google Scholar 

  24. Yu LL, Wang RL, Zhang YZ, Kleemann DO, Zhu XP, Jia ZH. Effects of selenium supplementation on polyunsaturated fatty acid concentrations and antioxidant status in plasma and liver of lambs fed linseed oil or sunflower oil diets. Anim. Feed Sci. Techn. 140: 39–51 (2008)

    Article  CAS  Google Scholar 

  25. Schäfer K, Kyriakopoulos A, Gessner H, Grune T, Behne D. Effects of selenium deficiency on fatty acid metabolism in rats fed fish oilenriched diets. J. Trace Elem. Med. Biol. 14: 89–97 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milan Čertík.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Čertík, M., Breierová, E., Oláhová, M. et al. Effect of selenium on lipid alternations in pigment-forming yeasts. Food Sci Biotechnol 22 (Suppl 1), 45–51 (2013). https://doi.org/10.1007/s10068-013-0047-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-013-0047-3

Keywords

Navigation