Skip to main content
Log in

Effects of substrates and seed layers on solution growing ZnO nanorods

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Oriented ZnO nanorods were fabricated in a two-step approach, including the synthesis of seed layer on different substrates and the growth of ZnO nanorods in aqueous solutions of zinc nitrate and hexamethylenetetramine at low temperature. The effects of seed layer synthesized by different methods, sol–gel method and electrochemical deposition method, on the orientation and morphologies of ZnO nanorods were compared in detail. The optimal parameters for the growth of highly oriented ZnO nanorod arrays were found and the forming mechanism was also disclosed. Furthermore, as an application of the ZnO nanorod film, dye-sensitized solar cells based on it were successfully fabricated. The cell performances of ZnO nanorods grown on ED-ZnO seed layer deposited at −700 mV were higher than those with SG-ZnO seed layer due to good nanostructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wacogne B, Roe MP, Pattinson TA (1995) Appl Phys Lett 67:1674. doi:10.1063/1.115053

    Article  CAS  Google Scholar 

  2. Barker A, Crowther S, Rees D (1997) Sens Actuators A58:229. doi:10.1016/S0924-4247(96)01430-6

    Article  CAS  Google Scholar 

  3. Wu Y, Yan H, Huang M, Messer B, Song JH, Yang P (2002) Chem Eur J 8:1260. doi:10.1002/1521-3765(20020315)8:6<1260::AID-CHEM1260>3.0.CO;2-Q

    Article  CAS  Google Scholar 

  4. Konenkamp R, Word RC, Schlegel C (2004) Appl Phys Lett 85:6004. doi:10.1063/1.1836873

    Article  CAS  Google Scholar 

  5. Koch MH, Timbrell PY, Lamb RN (1995) Semicond Sci Technol 10:1523. doi:10.1088/0268-1242/10/11/015

    Article  CAS  Google Scholar 

  6. Keis K, Magnusson E, Lindström H (2002) Sol Energy Mater Sol Cells 73:51. doi:10.1016/S0927-0248(01)00110-6

    Article  Google Scholar 

  7. Stolt L, Hedström J, Kessler J (1993) Appl Phys Lett 62:597. doi:10.1063/1.108867

    Article  CAS  Google Scholar 

  8. Huang HM, Mao S, Feick H, Yan H, Wu H, Kind H, Weber E, Russo R, Yang P (2001) Science 292:1897. doi:10.1126/science.1060367

    Article  CAS  Google Scholar 

  9. Izaki M, Ohmi T (1996) J Electrochem Soc 143:L53. doi:10.1149/1.1836529

    Article  CAS  Google Scholar 

  10. Haga K, Katahira F, Watanabe H (1999) Thin Solid Films 343:145. doi:10.1016/S0040-6090(98)01649-6

    Article  Google Scholar 

  11. Ambia MG, Islam MN, Hakim MO (1994) J Mater Sci 29:6575. doi:10.1007/BF00354023

    Article  CAS  Google Scholar 

  12. Choi JH, Tabata T, Kawai T (2001) J Cryst Growth 226:493. doi:10.1016/S0022-0248(01)01388-4

    Article  CAS  Google Scholar 

  13. Vayssieres L, Keis K, Lindquist S, Hagfeldt A (2001) Phys Chem B 105:3350. doi:10.1021/jp010026s

    Article  CAS  Google Scholar 

  14. Boyle DS, Ovender GK, O’Brien P (2002) Chem Commun 14:80. doi:10.1039/b110079n

    Article  Google Scholar 

  15. Liu XX, Jin ZG, Bu SJ, Zhao J, Liu ZF (2005) Mater Lett 59:3994. doi:10.1016/j.matlet.2005.07.052

    Article  CAS  Google Scholar 

  16. Zhao J, Jin ZG, Li T, Liu XX, Liu ZF (2005) J Am Ceram Soc 89:2654. doi:10.1111/j.1551-2916.2006.01103.x

    Article  Google Scholar 

  17. Yu K, Jin ZG, Liu XX, Liu ZF, Fu YN (2006) Mater Lett 61:2775. doi:10.1016/j.matlet.2006.10.029

    Article  Google Scholar 

  18. Chen ZT, Gao L (2006) J Cryst Growth 293:522. doi:10.1016/j.jcrysgro.2006.05.082

    Article  CAS  Google Scholar 

  19. Li QC, Kumar V, Li Y, Zhang HT, Marks TJ, Chang RPH (2005) Chem Mater 17:1001. doi:10.1021/cm048144q

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from China Postdoctoral Science Foundation Funded Project (No. 20080440674), the Key Project of Chinese Ministry of Education (No. 208008), Technology Development Foundation Plan Project of Tianjin Colleges (No. 20071204), and Science Technology Plan Project of Chinese Ministry of Construction (No. 2007-K1-30).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhifeng Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Z., Ya, J. & E, L. Effects of substrates and seed layers on solution growing ZnO nanorods. J Solid State Electrochem 14, 957–963 (2010). https://doi.org/10.1007/s10008-009-0894-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-009-0894-2

Keywords

Navigation