Skip to main content
Log in

Frequency of the two mating types in the soil under productive and non-productive trees in five French orchards of the Périgord black truffle (Tuber melanosporum Vittad.)

  • Original Article
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

The Périgord black truffle (Tuber melanosporum Vittad.) is an ectomycorrhizal fungus forming edible fructifications. The production of T. melanosporum relies mainly on man-made plantations. T. melanosporum is a heterothallic species requiring the meeting of two partners of opposite mating types to fruit. It is common to have productive and non-productive trees in the same orchard. The aim of our study was to assess the distribution of T. melanosporum mating types in soil under productive and non-productive trees to test whether the presence or absence of one or two mating types could be an indicator of productivity. To achieve this aim, five orchards were selected in various French regions. Soils were harvested under productive and non-productive Quercus pubescens; soil characteristics and the distribution of the mating types in the soil were investigated. No significant differences between productive and non-productive soils according to soil parameters were detected. The total content of T. melanosporum DNA in the soil was significantly higher under productive trees compared with non-productive trees, and it was positively correlated only with soil available phosphorous. Under productive trees, it was more frequent to find both mating types than under non-productive trees. Soils with only one mating type were more frequent under non-productive trees than under productive ones. Moreover, no mating type was detected in the soil of 22% of the non-productive trees. These results suggest that the detection of T. melanosporum mating types in soil could be a tool to optimise the management of truffle orchards (e.g. by spore inoculation).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alonso-Ponce R, Ágreda T, Águeda B et al (2014) Soil physical properties influence “black truffle” fructification in plantations. Mycorrhiza 24:55–64

    Article  Google Scholar 

  • Baum C, Makeschin F (2000) Effect of nitrogen and phosphorus fertilization on mycorrhizal formation of two poplar clones (Populus trichocarpa and P. tremula x tremuloides). J Plant Nutr Soil Sc 163(5):491–497

    Article  CAS  Google Scholar 

  • Bencivenga M, Granetti B (1989) Indagine preliminare sul contenuto in macro e microelementi del terreno e dei carpofori di Tuber melanosporum Vitt. Micol Ital 3:25–30

    Google Scholar 

  • Bratek Z, Merényi Z, Illyés Z et al (2010) Studies on the ecophysiology of Tuber aestivum populations in the Carpatho-Pannonian region. Österr Z Pilzk 19 : 221-226

  • Browning MHR, Whitney RD (1992) The influence of phosphorus concentration and frequency of fertilization on ectomycorrhizal development in containerized black spruce and jack pine seedlings. Can J Forest Res 22(9):1263–1270

    Article  CAS  Google Scholar 

  • Cameleyre I, Olivier JM (1993) Evidence for intraspecific isozymes variations among French isolates of Tuber melanosporum (Vitt.). FEMS Microbiol Lett 110(2):159–162

    Article  CAS  Google Scholar 

  • Chen J, Murat C, Oviatt P et al (2016) The Black Truffles Tuber melanosporum and Tuber indicum. In: Zambonelli A, Iotti M, Murat C (eds) True Truffle (Tuber spp.) in the World. Springer International Publishing, pp 19–32

  • De la Varga H, Le Tacon F, Lagoguet M et al (2017) Five years investigation of female and male genotypes in Périgord black truffle (Tuber melanosporum Vittad.) revealed contrasted reproduction strategies. Environ Microbiol 19:2604–2615

    Article  Google Scholar 

  • Domínguez Núñez JA, Serrano JS, Rodriguez JA et al (2006) The influence of mycorrhisation with Tuber melanosporum in the afforestation of a Mediterranean site with Quercus ilex and Quercus faginea. Forest Ecol Manag 231:226–233

    Article  Google Scholar 

  • Garcia-Barreda S, Marco P, Martín-Santafé M et al (2020) Edaphic and temporal patterns of Tuber melanosporum fruitbody traits and effect of localised peat-based amendment. Sci Rep 10:1–9

    Article  Google Scholar 

  • García-Montero LG, Manjón JL, Pascual C, García-Abril A et al (2007) Ecological patterns of Tuber melanosporum and different Quercus Mediterranean forests: Quantitative production of truffles, burn sizes and soil studies. Forest Ecol Manag 242:288–296

    Article  Google Scholar 

  • Hijmans RJ (2020) Raster: Geographic Data Analysis and Modeling. R package version 3.0–12. https://CRAN.R-project.org/package=raster

  • Hilszczańska D, Rosa-Gruszecka A, Gawryś R, Horak J et al (2019) Effect of soil properties and vegetation characteristics in determining the frequency of Burgundy truffle fruiting bodies in Southern Poland. Écoscience 26:113–122

    Article  Google Scholar 

  • Jaillard B, Barry-Etienne D, Colinas C et al (2014) Alkalinity and structure of soils determine the truffle production in the Pyrenean Regions. Forest Sys 23:364–377

    Article  Google Scholar 

  • Le S, Josse J, Husson F et al (2008) FactoMineR: a R package for multivariate analysis. J Stat Softw 25(1):1–18

    Article  Google Scholar 

  • Le Tacon F, Rubini A, Murat C et al (2016) Certainties and uncertainties about the life cycle of the Périgord black truffle Tuber melanosporumVittad.). Ann Forest Sci 73:105–117

    Article  Google Scholar 

  • Le Tacon F, Delmas J, Gleyze R, Bouchard D (1982) Influence du régime hydrique du sol et de la fertilisation sur la fructification de la truffe noire du Périgord (Tuber melanosporum Vitt.) dans le sud-est de la France. Acta Oecologica, Oecologia appl 3:291–306

    Google Scholar 

  • Li Q, Fu Y, Sun Q et al (2018) The uneven distribution of mating type genes in natural and cultivated truffle orchards contributes to the fructification of Tuber indicum. Mycobiology 46:64–71

    Article  Google Scholar 

  • Linde CC, Selmes H (2012) Genetic diversity and mating type distribution of Tuber melanosporum and their significance to truffle cultivation in artificially planted truffiéres in Australia. Appl Environ Microbiol 78:6534–6539

    Article  CAS  Google Scholar 

  • Lulli L, Bragato G, Gardin L et al (1999) Occurrence of Tuber melanosporum in relation to soil surface layer properties and soil differentiation. Plant Soil 214:85–92

    Article  CAS  Google Scholar 

  • Martin F, Kohler A, Murat C et al (2010) Périgord black truffle genome uncovers evolutionary origins and mechanisms of symbiosis. Nature 464:1033–1038

    Article  CAS  Google Scholar 

  • Moeys J (2018) Soil texture: Functions for Soil Texture Plot, Classification and Transformation. R package version 1.5.1. https://CRAN.R-project.org/package=soiltexture

  • Murat C (2015) Forty years of inoculating seedlings with truffle fungi: past and future perspectives. Mycorrhiza 25:77–81

    Article  Google Scholar 

  • Murat C, Bonneau L, De la Varga H et al (2016) Trapping truffle production in holes: a promising technique for improving production and unravelling truffle life cycle. Ital J Mycol 45:47–53

    Google Scholar 

  • Murat C, Rubini A, Riccioni C et al (2013) Fine-scale spatial genetic structure of the black truffle (Tuber melanosporum) investigated with neutral microsatellites and functional mating type genes. New Phytol 199:176–187

    Article  CAS  Google Scholar 

  • Oliach D, Colinas C, Castaño C et al (2020) The influence of forest surroundings on the soil fungal community of black truffle (Tuber melanosporum) plantations. Forest Ecol Manag 469:118199

    Article  Google Scholar 

  • Olivier J-M, Savignac J-C, Sourzat P (2012) Truffe et trufficulture. Editions Fanlac, Périgueux

    Google Scholar 

  • Parladé J, De la Varga H, De Miguel AM et al (2013) Quantification of extraradical mycelium of Tuber melanosporum in soils from truffle orchards in northern Spain. Mycorrhiza 23:99–106

    Article  Google Scholar 

  • Queralt M, Parladé J, Pera J, De Miguel AM et al (2017) Seasonal dynamics of extraradical mycelium and mycorrhizas in a black truffle (Tuber melanosporum) plantation. Mycorrhiza 27:565–576

    Article  CAS  Google Scholar 

  • R Core Team (2019) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

  • Raglione M, Spadoni M, Cavelli S, Lorenzoni P, De Simone C et al (2001) Les sols des truffières naturelles de Tuber melanosporum Vitt. dans l’Apennin Central (Italy). In: Actes du Ve Congrès International, Science et Culture de la Truffe, 4–6th March 1999, Aix-en-Provence, France. pp : 5276–5280

  • Rubini A, Belfiori B, Riccioni C et al (2011a) Tuber melanosporum: mating type distribution in a natural plantation and dynamics of strains of different mating types on the roots of nursery-inoculated host plants. New Phytol 189:723–735

    Article  Google Scholar 

  • Rubini A, Belfiori B, Riccioni C et al (2011b) Isolation and characterisation of MAT genes in the symbiotic ascomycete Tuber melanosporum. New Phytol 189:710–722

    Article  CAS  Google Scholar 

  • Schneider-Maunoury L, Deveau A, Moreno M et al (2020) Two ectomycorrhizal truffles, Tuber melanosporum and T. aestivum, endophytically colonise roots of non-ectomycorrhizal plants in natural environments. New Phytol 225:2542–2556

    Article  CAS  Google Scholar 

  • Selosse MA (2020) Truffles. Curr Biol 30(9):382–383

    Article  Google Scholar 

  • Suz LM, Martín MP, Oliach D et al (2008) Mycelial abundance and other factors related to truffle productivity in Tuber melanosporum–Quercus ilex orchards. FEMS Microbiol Lett 285:72–78

    Article  CAS  Google Scholar 

  • Taschen E, Rousset F, Sauve M et al (2016) How the truffle got its mate: insights from genetic structure in spontaneous and planted Mediterranean populations of Tuber melanosporum. Mol Ecol 25:5611–5627

    Article  CAS  Google Scholar 

  • Todesco F, Belmondo S, Guignet Y et al (2019) Soil temperature and hydric potential influences the monthly variations of soil Tuber aestivum DNA in a highly productive orchard. Sci Rep 9:1–10

    Article  CAS  Google Scholar 

  • Wallander H, Nylund JE (1992) Effect of excess nitrogen and phosphorus starvation on the extramatricial mycelium of ectomycorrhizas of Pinus sylvestris L. New Phytol 120(4):495–503

    Article  CAS  Google Scholar 

  • Zampieri E, Rizzello R, Bonfante P, Mello A et al (2012) The detection of mating type genes of Tuber melanosporum in productive and non-productive soils. Appl Soil Ecol 57:9–15

    Article  Google Scholar 

Download references

Acknowledgements

Authors are grateful to Jean Marie Doublet, Pierre Fourès and Michel Tournayre, the truffle orchard owners, for their cooperation and assistance in the choice of the trees studied. A particular thanks to Pierre Sourzat and Patrick Rejou for their help in finding the truffle orchards.

Funding

The French National Research Agency (ANR) as part of the ‘Investissements d’Avenir’ program (ANR-11-LABX-0002-01, Lab of Excellence ARBRE) and ANR SYSTERRA SYSTRUF (ANR-09-STRA-10) financed this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claude Murat.

Ethics declarations

Conflict of interest

Claude Murat is one of the inventors of the international patent entitled “Molecular method for the identification of mating type genes of truffles species” (EP2426215 A1).

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., De la Varga, H., Todesco, F. et al. Frequency of the two mating types in the soil under productive and non-productive trees in five French orchards of the Périgord black truffle (Tuber melanosporum Vittad.). Mycorrhiza 31, 361–369 (2021). https://doi.org/10.1007/s00572-020-01011-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-020-01011-4

Keywords

Navigation