Skip to main content
Log in

Non-surgical treatment of obstructive sleep apnea syndrome

  • Review Article
  • Published:
European Archives of Oto-Rhino-Laryngology Aims and scope Submit manuscript

Abstract

Obstructive sleep apnea syndrome (OSAS), a pervasive disease, is closely associated with complications such as cardiovascular diseases, neurocognitive diseases, and metabolic syndromes. Continuous positive airway pressure (CPAP) is the standard treatment for OSAS, with low compliance due to multifarious factors. The two other modes of ventilation, bi-level positive airway pressure (BPAP) and autotitrating positive airway pressure (APAP), which were developed from CPAP, are slightly different from CPAP in specific groups, as well as the corresponding treatment effect and compliance. The compliance of traditional positional therapy is not high, but with the emergence of the neck-based position treatment device, its compliance and indications have changed. Although CPAP is superior to mandibular advancement device (MAD) in improving AHI, MAD seems to be comparable to CPAP in improving other indicators. Corticosteroids and leukotriene receptor antagonists are effective treatments for mild OSAS children. Whether corticosteroids can be used in other OSAS groups and their adjunctive functions to CPAP remains unclear. The combination of these two kinds of drugs appears to be more effective than single drug. Researches on transcutaneous electrical stimulation are still not enough. Its effectiveness and stimulation settings still need further study. This review summarized the various OSAS non-surgical treatments from indications, treatment outcomes, compliance, adverse reactions, and recent progress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Malhotra A, White DP (2002) Obstructive sleep apnoea. Lancet 360:237–245. https://doi.org/10.1016/S0140-6736(02)09464-3

    Article  PubMed  Google Scholar 

  2. Jordan AS, McSharry DG, Malhotra A (2014) Adult obstructive sleep apnoea. Lancet 383:736–747. https://doi.org/10.1016/S0140-6736(13)60734-5

    Article  PubMed  Google Scholar 

  3. Marcus CL, Brooks LJ, Draper KA et al (2012) Diagnosis and management of childhood obstructive sleep apnea syndrome. Pediatrics 130:576–584. https://doi.org/10.1542/peds.2012-1672

    Article  PubMed  Google Scholar 

  4. Javaheri S, Barbe F, Campos-Rodriquez F et al (2017) Sleep apnea: types, mechanisms, and clinical cardiovascular consequences. J Am Coll Cardiol 69.7:841–858. https://doi.org/10.1016/j.jacc.2016.11.069

    Article  Google Scholar 

  5. De Dios JA, Brass SD (2012) New and unconventional treatments for obstructive sleep apnea. Neurotherapeutics 9:702–709. https://doi.org/10.1007/s13311-012-0146-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Franklin KA, Lindberg E (2015) Obstructive sleep apnea is a common disorder in the population—a review on the epidemiology of sleep apnea. J Thorac Dis 7:1311–1322. https://doi.org/10.3978/j.issn.2072-1439.2015.06.11

    PubMed  PubMed Central  Google Scholar 

  7. Smith DF, Cohen AP, Ishman SL (2015) Surgical management of OSA in adults. Chest 147:1681–1690. https://doi.org/10.1378/chest.14-2078

    Article  PubMed  Google Scholar 

  8. Zhang XM, Tham CJ, Yin YL, Sun YQ, Zhou X (2015) A novel palatal implant surgery combined with uvulopalatopharyngoplasty and inferior turbinate radiofrequency for the treatment of moderate to severe obstructive sleep apnea: a pilot study. Eur Arch Otorhinolaryngol 272: 1195–202. https://doi.org/10.1007/s00405-015-3507-y

  9. Camacho M, Noller MW, Zaghi S et al (2017) Tongue surgeries for pediatric obstructive sleep apnea: a systematic review and meta-analysis. Eur Arch Otorhinolaryngol 274:2981–2990. https://doi.org/10.1007/s00405-017-4545-4

    Article  PubMed  Google Scholar 

  10. MacKay SG, Chan L (2016) Surgical approaches to obstructive sleep apnea. Sleep Med Clin 11:331–341. https://doi.org/10.1016/j.jsmc.2016.04.003

    Article  PubMed  Google Scholar 

  11. Bostanci A, Turhan M (2016) A systematic review of tongue base suspension techniques as an isolated procedure or combined with uvulopalatopharyngoplasty in obstructive sleep apnea. Eur Arch Otorhinolaryngol 273:2895–2901. https://doi.org/10.1007/s00405-015-3814-3

    Article  PubMed  Google Scholar 

  12. Camacho M, Teixeira J, Abdullatif J, Acevedo JL, Certal V, Capasso R, Powell NB (2015) Maxillomandibular advancement and tracheostomy for morbidly obese obstructive sleep apnea: a systematic review and meta-analysis. Otolaryngol Head Neck Surg 152:619–630. https://doi.org/10.1177/0194599814568284

    Article  PubMed  Google Scholar 

  13. Ishii L, Roxbury C, Godoy A et al. Does nasal surgery improve OSA in patients with nasal obstruction and OSA? a meta-analysis. Otolaryngol Head Neck Surg 153: 326–333. https://doi.org/10.1177/0194599814568284

  14. Kushida CA, Littner MR, Hirshkowitz M et al (2006) Practice parameters for the use of continuous and bilevel positive airway pressure devices to treat adult patients with sleep-related breathing disorders. Sleep 29:375–380

    Article  PubMed  Google Scholar 

  15. Sullivan CE, Issa FG, Berthon-Jones M, Eves L (1981) Reversal of obstructive sleep apnoea by continuous positive airway pressure applied through the nares. Lancet 317:862–865

    Article  Google Scholar 

  16. Owens RL, Malhotra A, Eckert DJ, White DP, Jordan AS (2010) The influence of end-expiratory lung volume on measurements of pharyngeal collapsibility. J Appl Physiol (1985) 108:445–451. https://doi.org/10.1152/japplphysiol.00755.2009

    Article  Google Scholar 

  17. Squier SB, Patil SP, Schneider H, Kirkness JP, Smith PL, Schwartz AR (2010) Effect of end-expiratory lung volume on upper airway collapsibility in sleeping men and women. J Appl Physiol (1985) 109:977–985. https://doi.org/10.1152/japplphysiol.00080.2010

    Article  Google Scholar 

  18. Berry RB, Block AJ (1984) Positive nasal airway pressure eliminates snoring as well as obstructive sleep apnea. Chest 85:15–20

    Article  CAS  PubMed  Google Scholar 

  19. Cruz IA, Drummond M, Winck JC (2012) Obstructive sleep apnea symptoms beyond sleepiness and snoring: effects of nasal APAP therapy. Sleep Breath 16:361–366. https://doi.org/10.1007/s11325-011-0502-4

    Article  PubMed  Google Scholar 

  20. Seneviratne U, Puvanendran K (2004) Excessive daytime sleepiness in obstructive sleep apnea: prevalence, severity, and predictors. Sleep Med 5:339–343

    Article  PubMed  Google Scholar 

  21. Gonsalves MA, Paiva T, Ramos E, Guilleminault C (2004) Obstructive sleep apnea syndrome, sleepiness, and quality of life. Chest 125:2091–2096

    Article  Google Scholar 

  22. Antic NA, Catcheside P, Buchan C et al (2011) The effect of CPAP in normalizing daytime sleepiness, quality of life, and neurocognitive function in patients with moderate to severe OSA. Sleep 34:111–119

    Article  PubMed  PubMed Central  Google Scholar 

  23. Jean RE, Duttuluri M, Gibson CD, Mir S, Fuhrmann K, Eden E, Supariwala A (2017) Improvement in physical activity in persons with obstructive sleep apnea treated with continuous positive airway pressure. J Phys Act Health 14:176–182. https://doi.org/10.1123/jpah.2016-0289

    Article  PubMed  Google Scholar 

  24. Boerner B, Tini GM, Fachinger P, Graber SM, Irani S (2017) Significant improvement of olfactory performance in sleep apnea patients after three months of nasal CPAP therapy–Observational study and randomized trial. PloS One 12:e0171087. https://doi.org/10.1371/journal.pone.0171087

    Article  PubMed  PubMed Central  Google Scholar 

  25. George CF (2001) Reduction in motor vehicle collisions following treatment of sleep apnoea with nasal CPAP. Thorax 56:508–512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tregear S, Reston J, Schoelles K, Phillips B (2010) Continuous positive airway pressure reduces risk of motor vehicle crash among drivers with obstructive sleep apnea: systematic review and meta-analysis. Sleep 33:1373–1380

    Article  PubMed  PubMed Central  Google Scholar 

  27. Orth M, Duchna HW, Leidag M et al (2005) Driving simulator and neuropsychological testing in OSAS before and under CPAP therapy. Eur Respir J 26:898–903. https://doi.org/10.1183/09031936.05.00054704

    Article  CAS  PubMed  Google Scholar 

  28. Chakravorty I, Cayton RM, Szczepura A (2002) Health utilities in evaluating intervention in the sleep apnoea/hypopnoea syndrome. Eur Respir J 20:1233–1238

    Article  CAS  PubMed  Google Scholar 

  29. Monasterio C, Vidal S, Duran J et al (2001) Effectiveness of continuous positive airway pressure in mild sleep apnea–hypopnea syndrome. Am J Respir Crit Care Med 164:939–943. https://doi.org/10.1164/ajrccm.164.6.2008010

    Article  CAS  PubMed  Google Scholar 

  30. Virk JS, Kotecha B (2016) When continuous positive airway pressure (CPAP) fails. J Thorac Dis 8:E1112-E1121. https://doi.org/10.21037/jtd.2016.09.67

    Article  PubMed  PubMed Central  Google Scholar 

  31. Wang Y, Ai L, Luo J, Li R, Chai Y, He X, Cao Y, Li Y (2017) Effect of adherence on daytime sleepiness, fatigue, depression and sleep quality in the obstructive sleep apnea/hypopnea syndrome patients undertaking nasal continuous positive airway pressure therapy. Patient Prefer Adherence 11:769–779. https://doi.org/10.2147/PPA.S128217

    Article  PubMed  PubMed Central  Google Scholar 

  32. Zandieh S, Katz ES (2010) Retrograde lacrimal duct airflow during nasal positive pressure ventilation. J Clin Sleep Med 6:603–604

    PubMed  PubMed Central  Google Scholar 

  33. Virk JS, Kotecha B (2016) Otorhinolaryngological aspects of sleep-related breathing disorders. J Thorac Dis 8:213–223. https://doi.org/10.3978/j.issn.2072-1439.2016.01.39

    Article  PubMed  PubMed Central  Google Scholar 

  34. Donovan LM, Boeder S, Malhotra A, Patel SR. New developments in the use of positive airway pressure for obstructive sleep apnea. J Thorac Dis 7: 1323–1342. https://doi.org/10.3978/j.issn.2072-1439.2015.07.30

  35. Russell T (2014) Enhancing adherence to positive airway pressure therapy for sleep disordered breathing. Sermin Respir Crit Care Med 35:604–612. https://doi.org/10.1055/s-0034-1390070

    Article  Google Scholar 

  36. İriz A, Düzlü M, Köktürkr O, Kemaloğlu YK, Eravcı FC, Zorlu ME, Karamert R (2017) Does nasal congestion have a role in decreased resistance to regular CPAP usage? Eur Arch Otorhinolaryngol 274:4031–4034. https://doi.org/10.1007/s00405-017-4744-z

    Article  PubMed  Google Scholar 

  37. Epstein LJ, Kristo D, Strollo PJ Jr, Friedman N et al (2009) Clinical guideline for the evaluation, management and long-term care of obstructive sleep apnea in adults. J Clin Sleep Med 5:263–276

    PubMed  Google Scholar 

  38. Hudgel DW, Harasick T (1990) Fluctuation in timing of upper airway and chest wall inspiratory muscle activity in obstructive sleep apnea. J Appl Physiol (1985) 69:443–450

    Article  CAS  Google Scholar 

  39. Sanders MH, Kern N (1990) Obstructive sleep apnea treated by independently adjusted inspiratory and expiratory positive airway pressures via nasal mask: physiologic and clinical implications. Chest 98:317–324

    Article  CAS  PubMed  Google Scholar 

  40. Gay PC, Herold DL, Olson EJ (2003) A randomized, double-blind clinical trial comparing continuous positive airway pressure with a novel bilevel pressure system for treatment of obstructive sleep apnea syndrome. Sleep 26:864–869

    Article  PubMed  Google Scholar 

  41. Reeves-Hoche MK, Hudgel DW, Meck R, Witteman R, Ross A, Zwillich CW (1995) Continuous versus bilevel positive airway pressure for obstructive sleep apnea. Am J Respir Crit Care Med 151:443–449. https://doi.org/10.1164/ajrccm.151.2.7842204

    Article  CAS  PubMed  Google Scholar 

  42. Schwartz SW, Rosas J, Iannacone MR, Foulis PR, Anderson WM (2013) Correlates of a prescription for Bilevel positive airway pressure for treatment of obstructive sleep apnea among veterans. J Clin Sleep Med 9:327–335. https://doi.org/10.5664/jcsm.2580

    PubMed  PubMed Central  Google Scholar 

  43. Piper AJ, Wang D, Yee BJ, Barnes DJ, Grunstein RR (2008) Randomised trial of CPAP vs bilevel support in the treatment of obesity hypoventilation syndrome without severe nocturnal desaturation. Thorax 63:395–401. https://doi.org/10.1136/thx.2007.081315

    Article  CAS  PubMed  Google Scholar 

  44. Ip S, D’Ambrosio C, Patel K, Obadan N, Kitsios GD, Chung M, Balk EM (2012) Auto-titrating versus fixed continuous positive airway pressure for the treatment of obstructive sleep apnea: a systematic review with meta-analyses. Syst Rev 1:20. https://doi.org/10.1186/2046-4053-1-20

    Article  PubMed  PubMed Central  Google Scholar 

  45. Morgenthaler TI, Aurora RN, Brown T et al (2008) Practice parameters for the use of autotitrating continuous positive airway pressure devices for titrating pressures and treating adult patients with obstructive sleep apnea syndrome: an update for 2007. Sleep 31:141–147

    Article  PubMed  PubMed Central  Google Scholar 

  46. Patruno V, Aiolfi S, Costantino G, Murgia R, Selmi C, Malliani A, Montano N (2007) Fixed and autoadjusting continuous positive airway pressure treatments are not similar in reducing cardiovascular risk factors in patients with obstructive sleep apnea. Chest 131:1393–1399. https://doi.org/10.1378/chest.06-2192

    Article  PubMed  Google Scholar 

  47. Patruno V, Tobaldini E, Bianchi AM, Mendez MO, Coletti O, Costantino G, Montano N (2014) Acute effects of autoadjusting and fixed continuous positive airway pressure treatments on cardiorespiratory coupling in obese patients with obstructive sleep apnea. Eur J Intern Med 25:164–168. https://doi.org/10.1016/j.ejim.2013.11.009

    Article  PubMed  Google Scholar 

  48. Gulati A, Ali M, Davies M, Quinnell T, Smith I (2017) A prospective observational study to evaluate the effect of social and personality factors on continuous positive airway pressure (CPAP) compliance in obstructive sleep apnoea syndrome. BMC Pulm Med 17:56. https://doi.org/10.1186/s12890-017-0393-7

    Article  PubMed  PubMed Central  Google Scholar 

  49. Mador MJ, Kufel TJ, Magalang UJ, Rajesh SK, Watwe V, Grant BJ Prevalence of positional sleep apnea in patients undergoing polysomnography. Chest 128: 2130–2137. https://doi.org/10.1378/chest.128.4.2130

  50. Oksenberg A, Khamaysi I, Silverberg DS, Tarasiuk A (2000) Association of body position with severity of apneic events in patients with severe nonpositional obstructive sleep apnea. Chest 118:1018–1024

    Article  CAS  PubMed  Google Scholar 

  51. Levendowski DJ, Seagraves S, Popovic D, Westbrook PR (2014) Assessment of a neck-based treatment and monitoring device for positional obstructive sleep apnea. J Clin Sleep Med 10:863–871. https://doi.org/10.5664/jcsm.3956

    PubMed  PubMed Central  Google Scholar 

  52. Bignold JJ, Deans-Costi G, Goldsworthy MR, Robertson CA, McEvoy D, Catcheside PG, Mercer JD (2009) Poor long-term patient compliance with the tennis ball technique for treating positional obstructive sleep apnea. J Clin Sleep Med 5:428–430

    PubMed  PubMed Central  Google Scholar 

  53. de Vries GE, Hoekema A, Doff MH, Kerstjens HA, Meijer PM, van der Hoeven JH, Wijkstra PJ (2015) Usage of positional therapy in adults with obstructive sleep apnea. J Clin Sleep Med 11:131–137. https://doi.org/10.5664/jcsm.4458

    PubMed  PubMed Central  Google Scholar 

  54. Bidarian-Moniri A, Nilsson M, Attia J, Ejnell H (2015) Mattress and pillow for prone positioning for treatment of obstructive sleep apnoea. Acta Otolaryngol 135:271–276. https://doi.org/10.3109/00016489.2014.968674

    Article  PubMed  PubMed Central  Google Scholar 

  55. Afrashi A, Ucar ZZ (2015) Effect of prone positioning in mild to moderate obstructive sleep apnea syndrome. Sleep Breath 19:1027–1034. https://doi.org/10.1007/s11325-014-0985-x

    Article  PubMed  Google Scholar 

  56. Eckert DJ, Malhotra A (2008) Pathophysiology of adult obstructive sleep apnea. Proc Am Thorac Soc 5:144–153. https://doi.org/10.1513/pats.200707-114MG

    Article  PubMed  PubMed Central  Google Scholar 

  57. Martin SE, Mathur R, Marshall I, Douglas NJ (1997) The effect of age, sex, obesity and posture on upper airway size. Eur Respir J 10:2087–2090

    Article  CAS  PubMed  Google Scholar 

  58. Popovic RM, White DP (1995) Influence of gender on waking genioglossal electromyogram and upper airway resistance. Am J Respir Crit Care Med 152:725–731. https://doi.org/10.1164/ajrccm.152.2.7633734

    Article  CAS  PubMed  Google Scholar 

  59. Scarlata S, Bartoli IR, Santangelo S, Giannunzio G, Pedone C, Antonelli Incalzi R (2016) Short-term effects of a vibrotactile neck-based treatment device for positional obstructive sleep apnea: preliminary data on tolerability and efficacy. J Thorac Dis 8:1820–1824. https://doi.org/10.21037/jtd.2016.04.69

    Article  PubMed  PubMed Central  Google Scholar 

  60. Ha SC, Hirai HW, Tsoi KK (2014) Comparison of positional therapy versus continuous positive airway pressure in patients with positional obstructive sleep apnea: a meta-analysis of randomized trials. Sleep Med Rev 18:19–24. https://doi.org/10.1016/j.smrv.2013.05.003

    Article  PubMed  Google Scholar 

  61. Ramar K, Dort LC, Katz SG, Lettieri CJ, Harrod CG, Thomas SM, Chervin RD (2015) Clinical practice guideline for the treatment of obstructive sleep apnea and snoring with oral appliance therapy: an update for 2015. J Clin Sleep Med 11:773–827. https://doi.org/10.5664/jcsm.4858

    PubMed  PubMed Central  Google Scholar 

  62. Doff MH, Hoekema A, Wijkstra PJ, van der Hoeven JH, Huddleston Slater JJ, de Bont LG, Stegenga B (2013) Oral appliance versus continuous positive airway pressure in obstructive sleep apnea syndrome: a 2-year follow-up. Sleep 36:1289–1296. https://doi.org/10.5665/sleep.2948

    Article  PubMed  PubMed Central  Google Scholar 

  63. Liu Y, Lowe AA, Fleetham JA, Park YC (2001) Cephalometric and physiologic predictors of the efficacy of an adjustable oral appliance for treating obstructive sleep apnea. Am J Orthod Dentofacial Orthop 120:639–647

    Article  CAS  PubMed  Google Scholar 

  64. Marklund M, Stenlund H, Franklin KA (2004) Mandibular advancement devices in 630 men and women with obstructive sleep apnea and snoring: tolerability and predictors of treatment success. Chest 125:1270–1278

    Article  PubMed  Google Scholar 

  65. Mehta A, Qian J, Petocz P, Darendeliler MA, Cistulli PA (2001) A randomized, controlled study of a mandibular advancement splint for obstructive sleep apnea. Am J Respir Crit Care Med 163:1457–1461. https://doi.org/10.1164/ajrccm.163.6.2004213

    Article  CAS  PubMed  Google Scholar 

  66. Sharples LD, Clutterbuck-James AL, Glover MJ, Bennett MS, Chadwick R, Pittman MA, Quinnell TG (2016) Meta-analysis of randomised controlled trials of oral mandibular advancement devices and continuous positive airway pressure for obstructive sleep apnoea-hypopnoea. Sleep Med Rev 27:108–124. https://doi.org/10.1016/j.smrv.2015.05.003

    Article  PubMed  Google Scholar 

  67. Gupta MA, Simpson FC, Lyons DC (2016) The effect of treating obstructive sleep apnea with positive airway pressure on depression and other subjective symptoms: a systematic review and meta-analysis. Sleep Med Rev 28:55–68. https://doi.org/10.1016/j.smrv.2015.07.002

    Article  PubMed  Google Scholar 

  68. Nikolopoulou M, Byraki A, Ahlberg J et al (2017) Oral appliance therapy versus nasal continuous positive airway pressure in obstructive sleep apnoea syndrome: a randomised, placebo-controlled trial on self-reported symptoms of common sleep disorders and sleep-related problems. J Oral Rehabil 44:452–460. https://doi.org/10.1111/joor.12505

    Article  CAS  PubMed  Google Scholar 

  69. Kuhn E, Schwarz EI, Bratton DJ, Rossi VA, Kohler M (2017) Effects of CPAP and mandibular advancement devices on health-related quality of life in OSA: a systematic review and meta-analysis. Chest 151:786–794. https://doi.org/10.1016/j.chest.2017.01.020

    Article  PubMed  Google Scholar 

  70. Aarab G, Lobbezoo F, Hamburger HL, Naeije M (2011) Oral appliance therapy versus nasal continuous positive airway pressure in obstructive sleep apnea: a randomized, placebo-controlled trial. Respiration 81:411–419. https://doi.org/10.1159/000319595

    Article  PubMed  Google Scholar 

  71. Bratton DJ, Gaisl T, Wons AM, Kohler M (2015) CPAP vs mandibular advancement devices and blood pressure in patients with obstructive sleep apnea: a systematic review and meta-analysis. JAMA 314:2280–2293. https://doi.org/10.1001/jama.2015.16303

    Article  CAS  PubMed  Google Scholar 

  72. Anandam A, Patil M, Akinnusi M, Jaoude P, El-Solh AA (2013) Cardiovascular mortality in obstructive sleep apnoea treated with continuous positive airway pressure or oral appliance: an observational study. Respirology 18:1184–1190. https://doi.org/10.1111/resp.12140

    Article  PubMed  Google Scholar 

  73. Phillips CL, Grunstein RR, Darendeliler MA et al. Health outcomes of continuous positive airway pressure versus oral appliance treatment for obstructive sleep apnea: a randomized controlled trial. Am J Respir Crit Care Med 187: 879–887. https://doi.org/10.1164/rccm.201212-2223OC

  74. White DP, Shafazand S (2013) Mandibular advancement device vs CPAP in the treatment of obstructive sleep apnea: are they equally effective in short term health outcomes? J Clin Sleep Med 9:971–972. https://doi.org/10.5664/jcsm.3008

    PubMed  PubMed Central  Google Scholar 

  75. Dioguardi A, Al-Halawani M (2016) Oral appliances in obstructive sleep apnea. Otolaryngol Clin North Am 49:1343–1357. https://doi.org/10.1016/j.otc.2016.07.005

    Article  PubMed  Google Scholar 

  76. Kheirandish-Gozal L, Gozal D (2008) Intranasal budesonide treatment for children with mild obstructive sleep apnea syndrome. Pediatrics 122:e149–e155. https://doi.org/10.1542/peds.2007-3398

    Article  PubMed  Google Scholar 

  77. Friedman BC, Goldman RD (2011) Anti-inflammatory therapy for obstructive sleep apnea in children. Can Fam Physician 57:891–893

    PubMed  PubMed Central  Google Scholar 

  78. Goldbart AD, Krishna J, Li RC, Serpero LD, Gozal D (2006) Inflammatory mediators in exhaled breath condensate of children with obstructive sleep apnea syndrome. Chest 130:143–148. https://doi.org/10.1378/chest.130.1.143

    Article  PubMed  Google Scholar 

  79. Chan CC, Au CT, Lam HS, Lee DL, Wing YK, Li AM (2015) Intranasal corticosteroids for mild childhood obstructive sleep apnea–a randomized, placebo-controlled study. Sleep Med 16:358–363. https://doi.org/10.1016/j.sleep.2014.10.015

    Article  PubMed  Google Scholar 

  80. Acar M, Cingi C, Sakallioglu O, San T, Fatih Yimenicioglu M, Bal (2013) The effects of mometasone furoate and desloratadine in obstructive sleep apnea syndrome patients with allergic rhinitis. Am J Rhinol Allergy 27:e113–e116. https://doi.org/10.2500/ajra.2013.27.3921

    Article  PubMed  Google Scholar 

  81. Liu HT, Lin YC, Kuan YC, Huang YH, Hou WH, Liou TH, Chen HC (2016) Intranasal corticosteroid therapy in the treatment of obstructive sleep apnea: a meta-analysis of randomized controlled trials. Am J Rhinol Allergy 30:215–221. https://doi.org/10.2500/ajra.2016.30.4305

    Article  PubMed  Google Scholar 

  82. Lavigne F, Petrof BJ, Johnson JR et al (2013) Effect of topical corticosteroids on allergic airway inflammation and disease severity in obstructive sleep apnoea. Clin Exp Allergy 43:1124–1133. https://doi.org/10.1111/cea.12158

    CAS  PubMed  Google Scholar 

  83. Morgenthaler TI, Kapen S, Lee-Chiong T et al (2006) Practice parameters for the medical therapy of obstructive sleep apnea. Sleep 29:1031–1035

    Article  PubMed  Google Scholar 

  84. Charakorn N, Hirunwiwatkul P, Chirakalwasan N, Chaitusaney B, Prakassajjatham M (2017) The effects of topical nasal steroids on continuous positive airway pressure compliance in patients with obstructive sleep apnea: a systematic review and meta-analysis. Sleep Breath 21:3–8. https://doi.org/10.1007/s11325-016-1375-3

    Article  PubMed  Google Scholar 

  85. Cielo CM, Gungor A (2016) Treatment options for pediatric obstructive sleep apnea. Curr Probl Pediatr Adolesc Health Care 46:27–33. https://doi.org/10.1016/j.cppeds.2015.10.006

    Article  PubMed  Google Scholar 

  86. Shokouhi F, Meymaneh Jahromi A, Majidi MR, Salehi M (2015) Montelukast in adenoid hypertrophy: its effect on size and symptoms. Iran J Otorhinolaryngol 27:443–448

    PubMed  PubMed Central  Google Scholar 

  87. Kheirandish-Gozal L, Bandla HP, Gozal D (2016) Montelukast for children with obstructive sleep apnea: results of a double-blind, randomized, placebo-controlled trial. Ann Am Thorac Soc 13:1736–1741. https://doi.org/10.1513/AnnalsATS.201606-432OC

    PubMed  Google Scholar 

  88. Sunkonkit K, Sritippayawan S, Veeravikrom M, Deerojanawong J, Prapphal N (2017) Urinary cysteinyl leukotriene E4 level and therapeutic response to montelukast in children with mild obstructive sleep apnea. Asian Pac J Allergy Immunol. https://doi.org/10.12932/AP0879

    PubMed  Google Scholar 

  89. Kheirandish-Gozal L, Bhattacharjee R, Bandla HPR, Gozal D (2014) Antiinflammatory therapy outcomes for mild OSA in children. Chest 146:88–95. https://doi.org/10.1378/chest.13-2288

    Article  PubMed  PubMed Central  Google Scholar 

  90. Yang DZ, Liang J, Zhang F, Yao HB, Shu Y (2017) Clinical effect of montelukast sodium combined with inhaled corticosteroids in the treatment of OSAS children. Medicine (Baltimore) 96:e6628. https://doi.org/10.1097/MD.0000000000006628

    Article  CAS  Google Scholar 

  91. Mezzanotte WS, Tangel DJ, White DP (1996) Influence of sleep onset on upper-airway muscle activity in apnea patients versus normal controls. Am J Respir Crit Care Med 153:1880–1887. https://doi.org/10.1164/ajrccm.153.6.8665050

    Article  CAS  PubMed  Google Scholar 

  92. Patil SP, Schneider H, Marx JJ, Gladmon E, Schwartz AR, Smith PL (2007) Neuromechanical control of upper airway patency during sleep. J Appl Physiol (1985) 102:547–556. https://doi.org/10.1152/japplphysiol.00282.2006

    Article  Google Scholar 

  93. Edmonds LC, Daniels BK, Stanson AW, Sheedy PF 3rd, Shepard JW Jr (1992) The effects of transcutaneous electrical stimulation during wakefulness and sleep in patients with obstructive sleep apnea. Am Rev Respir Dis 146:1030–1036. https://doi.org/10.1164/ajrccm/146.4.1030

    Article  CAS  PubMed  Google Scholar 

  94. Decker MJ, Haaga J, Arnold JL, Atzberger D, Strohl KP (1993) Functional electrical stimulation and respiration during sleep. J Appl Physiol (1985) 75:1053–1061

    Article  CAS  Google Scholar 

  95. Lequeux T, Chantrain G, Bonnand M, Chelle AJ, Thill MP (2005) Physiotherapy in obstructive sleep apnea syndrome: preliminary results. Eur Arch Otorhinolaryngol 262:501–503. https://doi.org/10.1007/s00405-004-0806-0

    Article  CAS  PubMed  Google Scholar 

  96. Chwieśko-Minarowska S, Minarowski Ł, Szewczak WA, Chyczewska E, Kuryliszyn-Moskal A (2016) Efficacy of daytime transcutaneous electrical stimulation of the genioglossus muscle in patients with obstructive sleep apnea syndrome. Eur Arch Otorhinolaryngol 273:3891–3895. https://doi.org/10.1007/s00405-016-4047-9

    Article  PubMed  Google Scholar 

  97. Pengo MF, Xiao S, Ratneswaran C et al (2016) Randomised sham-controlled trial of transcutaneous electrical stimulation in obstructive sleep apnoea. Thorax 71:923–931. https://doi.org/10.1136/thoraxjnl-2016-208691

    Article  PubMed  PubMed Central  Google Scholar 

  98. Campbell T, Pengo MF, Steier J (2015) Patients’ preference of established and emerging treatment options for obstructive sleep apnoea. J Thorac Dis 7:938–942. https://doi.org/10.3978/j.issn.2072-1439.2015.04.53

    PubMed  PubMed Central  Google Scholar 

  99. Steier J, Seymour J, Rafferty GF et al (2011) Continuous transcutaneous submental electrical stimulation in obstructive sleep apnea: a feasibility study. Chest 140:998–1007. https://doi.org/10.1378/chest.10-2614

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by Clinical Research training program of Southern Medical University (LC2016PY032).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen Xin.

Ethics declarations

Conflict of interest

All authors have no conflict of interest.

Human and animal rights statement

This article is a review article within which there are no human participants or animals. Informed consent is not available in this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tingting, X., Danming, Y. & Xin, C. Non-surgical treatment of obstructive sleep apnea syndrome. Eur Arch Otorhinolaryngol 275, 335–346 (2018). https://doi.org/10.1007/s00405-017-4818-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00405-017-4818-y

Keywords

Navigation