Skip to main content

Advertisement

Log in

Seaweed-Based Biogenic ZnO Nanoparticles for Improving Agro-morphological Characteristics of Rice (Oryza sativa L.)

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

To develop sustainable nano-agriculture, biogenic ZnO nanoparticles have been prepared using brown seaweed Turbinaria ornata (T. ornata) extract as a priming agent to promote rice seed quality and crop yield attributing to rice seeds. The results of various physico-chemical characterization analysis indicate the formation of ZnO nanoparticles. Rice seeds primed with seaweed-based biogenic ZnO nanoparticles at 10 mg/L showed that there has been enhancement in the seed germination (100%), shoot length (100 mm), shoot width (1.0 mm), root length (185.0 mm) root width (0.5 mm), seedling length (216 mm), leaf length 33.0 mm), leaf width (2.0 mm), seedling vigor (28,500 vigor index) and dry matter production (DMP) compared to the conventional hydropriming. Consequently, a micro-plot experiment has been conducted with foliar application of biogenic ZnO nanoparticles and the results revealed that at 10 mg/L recorded improvement in grain weight (653 g/m2), seed length (8.0 mm), seed thickness (1.71 mm) and seed width (3.23 mm) compared to hydroprimed seeds under. HR-SEM micrograph confirms the presence and assimilation of biogenic ZnO nanoparticles in treated seed/foliar applied leaf of rice plant. Further, ICP-MS analysis also confirmed the increase in Zn content in the nanoprimed rice seedlings and foliar applied rice crop in a dose-dependent manner. The experimental results thus demonstrate that the application of seaweed biogenic ZnO nanoparticles improving agronomical characteristics of rice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abdul-Baki AA, Anderson JD (1973) Vigor determination in soybean seed by multiple criteria. Crop Sci 13:630–633

    Article  Google Scholar 

  • Ahmed A, Dwivedi S, Abdin MZ, Azam A, Al-Shaeri M, Khan MS, Saquib Q, Al-Khedhairy AA, Musarrat J (2017) Mitochondrial and chromosomal damage induced by oxidative stress in Zn2+ ions, ZnO-bulk and ZnO-NPs treated Allium cepa roots. Sci Rep 7:40685

    Article  CAS  Google Scholar 

  • Ajouri A, Asgedom H, Becker M (2004) Seed priming enhances germination and seedling growth of barley under conditions of P and Zn deficiency. J Plant Nutr Soil Sci 167:630–636

    Article  Google Scholar 

  • Avinash A, Pandey S, Sanjay S, Yadav S (2010) Application of ZnO nanoparticles in influencing the growth rate of Cicer arietinum. J Exp Nanosci 5:488–497

    Article  Google Scholar 

  • Cakmak I (2008) Enrichment of cereal grains with zinc: agronomic or genetic biofortification? Plant Soil 302:1–17

    Article  CAS  Google Scholar 

  • Cakmak I, Kalayci M, Kaya Y, Torun AA, Aydin N, Wang Y, Arisoy Z, Erdem H, Yazici A, Gokmen O, Ozturk L, Horst WJ (2010) Biofortification and localization of zinc in wheat grain. J Agric Food Chem 58:9092–9102

    Article  CAS  Google Scholar 

  • Cao H, Zhao YG, Ong HC, Ho ST, Dai JY, Wu JY, Chang RPH (1998) Ultraviolet lasing in resonators formed by scattering in semiconductor polycrystalline films. Appl Phys Lett 73:3656–3658

    Article  CAS  Google Scholar 

  • Chaudhary S, Kaur Y, Jayee B, Ram Chaudhary G, Umar A (2018) NiO nanodisks: highly efficient visible-light driven photocatalyst, potential scaffold for seed germination of Vigna Radiata and antibacterial properties. J Clean Prod 190:563–576

    Article  CAS  Google Scholar 

  • Christianson DW (1991) Structural biology of zinc. Adv Protein Chem 4:281–295

    Article  Google Scholar 

  • Dai L, Chen XL, Wang WJ, Zhou T, Hu BQ (2003) Growth and luminescence characterization of large-scale zinc oxide nanowires. J Phys Condens Matter 15:2221–2226

    Article  CAS  Google Scholar 

  • Davarpanah S, Tehranifar A, Davarynejad G, Abadia J, Khorasani R (2016) Effects of foliar applications of zinc and boron nano-fertilizers on pomegranate (Punica granatum cv. Ardestani) fruit yield and quality. Sci Hortic 210:57–64

    Article  CAS  Google Scholar 

  • Farnia A, Omidi MM (2015) Effect of nano-zinc chelate and nano-biofertilizer on yield and yield components of maize (Zea mays L.) under water stress condition. Indian J Nat Sci 5:4614–4707

    Google Scholar 

  • Ghosh A, Deshpande NG, Gudage YG, Joshi RA, Sagade AA, Phase DM, Sharma R (2009) Effect of annealing on structural and optical properties of zinc oxide thin film deposited by successive ionic layer adsorption and reaction technique. J Alloys Compd 469:56–60

    Article  CAS  Google Scholar 

  • Govindaraju K, Kiruthiga V, Ganesh Kumar V, Singaravelu G (2009) Extracellular synthesis of silver nanoparticles by a marine alga, Sargassum wightii Grevilli and their antibacterial effects. J Nanosci Nanotechnol 9:5497–5501

    Article  CAS  Google Scholar 

  • Jaksomsak P, Tuiwong P, Rerkasem B, Guild G, Palmer L, Stangoulis J (2018) The impact of foliar applied zinc fertilizer on zinc and phytate accumulation in dorsal and ventral grain sections of four Thai rice varieties with different grain zinc. J Cereal Sci 79:6–12

    Article  CAS  Google Scholar 

  • Kim DY, Saratale R, Shinde S, Syed A, Ameen F, Ghodake G (2018) Green synthesis of silver nanoparticles using Laminaria japonica extract: characterization and seedling growth assessment. J Clean Prod 172:2910–2918

    Article  CAS  Google Scholar 

  • Kisan B, Shruthi H, Sharanagouda H, Revanappa SB, Pramod NK (2015) Effect of nano-zinc oxide on the leaf physical and nutritional quality of spinach. Agrotechnology 5:132–134

    Google Scholar 

  • Kumbhakar P, Singh D, Tiwary CS, Mitra AK (2008) Chemical synthesis and visible photoluminescence emission from monodispersed ZnO nanoparticles. Chalcogenide Lett 5:387–394

    Google Scholar 

  • Liu R, Lal R (2015) Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Sci Total Environ 514:131–139

    Article  CAS  Google Scholar 

  • Mahakham W, Theerakulpisut P, Maensiri S, Phumying S, Sarmah AK (2016) Environmentally benign synthesis of phytochemicals capped gold nanoparticles as nanopriming agent for promoting maize seed germination. Sci Total Environ 573:1089–1102

    Article  CAS  Google Scholar 

  • Mahakham W, Sarmah AK, Maensiri S, Theerakulpisut P (2017) Nanopriming technology for enhancing germination and starch metabolism of aged rice seeds using phytosynthesized silver nanoparticles. Sci Rep 7:8263

    Article  Google Scholar 

  • Prasad TNVKV, Sudhakar P, Sreenivasulu Y, Latha P, Munaswamy V, Raja Reddy K, Sreeprasad TS, Sajanlal PR, Pradeep T (2012) Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. J Plant Nutr 35:905–927

    Article  CAS  Google Scholar 

  • Raja K, Sowmya R, Sudhagar R, SathyaMoorthy Pon, Govindaraju K, Subramanian KS (2019) Biogenic ZnO and Cu nanoparticles to improve seed germination quality in blackgram (Vigna mungo). Mater Lett 235:164–167

    Article  CAS  Google Scholar 

  • Raliya R, Nair R, Chavalmane A, Wang WN, Biswas P (2015) Mechanistic evaluation of translocation and physiological impact of titanium dioxide and zinc oxide nanoparticles on the tomato (Solanum lycopersicum L.) plant. Metallomics 7:1584–1594

    Article  CAS  Google Scholar 

  • Raliya R, Saharan V, Dimkpa C, Biswas P (2018) Nanofertilizer for precision and sustainable agriculture: current state and future perspectives. J Agric Food Chem 66:6487–6503

    Article  CAS  Google Scholar 

  • Rengel Z, Graham RD (1995) Importance of seed zinc content for wheat growth on zinc-deficient soil. Plant Soil 173:259–266

    Article  CAS  Google Scholar 

  • Singaravelu G, Arockiamary JS, Ganesh Kumar V, Govindaraju K (2007) A novel extracellular synthesis of monodisperse gold nanoparticles using marine alga, Sargassum wightii Greville. Colloids Surf B 57:97–101

    Article  CAS  Google Scholar 

  • Singh AK, Viswanath V, Janu VC (2009) Synthesis, effect of capping agents, structural, optical and photoluminescence properties of ZnO nanoparticles. J Lumin 129:874–878

    Article  CAS  Google Scholar 

  • Singla ML, Shafeeq M, Manish Kumar M (2009) Optical characterization of ZnO nanoparticles capped with various surfactants. J Lumin 129:434–438

    Article  CAS  Google Scholar 

  • Subbaiah LV, Prasad TNVKV, Krishna TG, Sudhakar P, Reddy BR, Pradeep T (2016) Novel effects of nanoparticulate delivery of zinc on growth, productivity and zinc biofortification in maize (Zea mays L.). J Agric Food Chem 64:3778–3788

    Article  CAS  Google Scholar 

  • Umar A, Karunagaran B, Suh EK, Hahn YB (2006) Structural and optical properties of single-crystalline ZnO nanorods grown on silicon by thermal evaporation. Nanotechnology 17:4072–4077

    Article  CAS  Google Scholar 

  • Upadhyaya H, Roy H, Shome S, Tewari S, Bhattacharya MK, Panda SK (2017) Physiological impact of Zinc nanoparticle on germination of rice (Oryza sativa L.) seed. J Plant Sci Phytopathol 1:062–070

    Article  Google Scholar 

  • Van Dijken A, Meulenkamp EA, Vanmaekelbergh D, Meijerink A (2000) Identification of the transition responsible for the visible emission in ZnO using quantum size effects. J Lumin 90:123–128

    Article  Google Scholar 

  • Yang Y, Chen H, Zhao B, Bao X (2004) Size control of ZnO nanoparticles via thermal decomposition of zinc acetate coated on organic additives. J Cryst Growth 263:447–453

    Article  CAS  Google Scholar 

  • Yilmaz A, Ekiz H, Gultekin I, Torun B, Barut H, Karanlik S, Cakmak I (1998) Effect of seed zinc content on grain yield and zinc concentration of wheat growth in zinc-deficient calcareous soils. J Plant Nutr 21:2257–2264

    Article  CAS  Google Scholar 

  • Zhang T, Sun H, Lv Z, Cui L, Mao H, Kopittke PM (2018) Using synchrotron-based approaches to examine the foliar application of ZnSO4 and ZnO nanoparticles for field-grown winter wheat. J Agric Food Chem 66:2572–2579

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Natural Resource Management (NRM), Indian Council of Agricultural Research (ICAR) [F.No.NRM.11(16)/2015-AFC(4)], Ministry of Agriculture, Government of India for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kasivelu Govindaraju.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Itroutwar, P.D., Govindaraju, K., Tamilselvan, S. et al. Seaweed-Based Biogenic ZnO Nanoparticles for Improving Agro-morphological Characteristics of Rice (Oryza sativa L.). J Plant Growth Regul 39, 717–728 (2020). https://doi.org/10.1007/s00344-019-10012-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-019-10012-3

Keywords

Navigation