Skip to main content
Log in

Design and investigation of a dedicated PCF SPR biosensor for CANCER exposure employing external sensing

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this investigation, a “photonic crystal fiber (PCF)”-based “surface plasmon resonance (SPR)” biosensor is proposed for the early detection of cancerous cells. The “finite element method (FEM)” is used for the numerical analysis from the proposed biosensor. The sensing capacity is investigated for the refractive index (RI), varying from 1.360 to 1.401 for various cancerous cells. The proposed biosensor has produced peak “wavelength sensitivity (WS)” of \(12857.14 \;{\text{nm}}/{\text{RIU}}\) and \(14285.71\;{\text{nm}}/{\text{RIU}}\) for \({\text{TM}}\;{\text{mode}}\) and \({\text{TE}}\;{\text{mode}}\), respectively. Maximum “amplitude sensitivity (AS)” of 13,240 RIU− 1 and \(15010\;{\text{RIU}}^{ - 1}\) is obtained for \({\text{TM}}\;{\text{mode}}\) and \({\text{TE}}\;{\text{mode}}\), respectively. Highest “sensor resolution (SR)” of \(7.77 \times 10^{ - 6} \;{\text{RIU}}\) and \(7.00 \times 10^{ - 6 } \;{\text{RIU}}\) is obtained for \({\text{TM}}\;{\text{mode}}\) and \({\text{TE}}\;{\text{mode}}\), respectively. The proposed sensor has produced a high “figure of merit (FOM)” of \(17.39\;{\text{RIU}}^{ - 1} \) and \(21.61\;{\text{RIU}}^{ - 1}\) corresponding to \({\text{TM}}\;{\text{mode}}\) and \({\text{TE}}\;{\text{mode}}\), respectively. The linearity of resonance wavelength with RI for degree (2) produces a maximum value of the R-square as 0.9833 and 0.9870 for \({\text{TM}}\;{\text{mode}}\) and \({\text{TE}}\;{\text{mode}}\), respectively. These maximum values of the sensing parameters are obtained for the breast cancer cell (MCF 7).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. A. Yasli, H. Ademgil, S. Haxha, A. Aggoun, Multi-channel photonic crystal fiber based surface plasmon resonance sensor for multi-analyte sensing. IEEE Photonics J. 12(1), 6800515 (2020)

    Article  Google Scholar 

  2. E. Haque, M.A. Hossain, F. Ahmed, Y. Namihira, Surface plasmon resonance sensor based on modified D -shaped photonic crystal fiber for wider range of refractive index detection. IEEE Sens. J. 18(20), 8287–8293 (2018)

    Article  ADS  Google Scholar 

  3. H. Thenmozhi, M. Rajan, K. Ahmed, D-shaped PCF sensor based on SPR for the detection of carcinogenic agents in food and cosmetics. Optik (2019). https://doi.org/10.1016/j.ijleo.2018.11.098

    Article  Google Scholar 

  4. N. Chen, M. Chang, X. Lu, J. Zhou, X. Zhang, Numerical analysis of midinfrared D-shaped photonic-crystal-fiber sensor based on surface-plasmon-resonance effect for environmental monitoring. Appl. Sci. 10(11), 3897 (2020)

    Article  Google Scholar 

  5. A. Yasli, Cancer detection with surface plasmon resonance based photonic crystal fiber biosensor. Plasmonic (2021). https://doi.org/10.1007/s11468-021-01425-6

    Article  Google Scholar 

  6. J. Chen, S. Hou, J. Lei, An ultra-sensitive medical sensor for low refractive index analytes. Jpn J Appl Phys 60(3), 030908 (2021)

    Article  ADS  Google Scholar 

  7. K. Ahmed, M.A. AlZain, H. Abdullah, Y. Luo, Highly sensitive twin resonance coupling refractive index sensor based on gold- and MgF2-coated nano metal films. Biosensors 11(4), 104 (2021)

    Article  Google Scholar 

  8. A.M. Maidi, I. Yakasai, P.E. Abas, M.M. Nauman, R.A. Apong, Design and simulation of photonic crystal fiber for liquid sensing. Photonics 8(1), 16 (2021)

    Article  Google Scholar 

  9. H. Wang, M. Liao, H. Xiao, X. Han, Y. Jiang, High sensitivity temperature sensor based on a PDMS-assisted bow-shaped fiber structure. Optics Commun (2021). https://doi.org/10.1016/j.optcom.2020.126536

    Article  Google Scholar 

  10. X. Yan, Y. Wang, T. Cheng, S. Li, Photonic crystal fiber SPR liquid sensor based on elliptical detective channel. Micromachines 12(4), 408 (2021)

    Article  Google Scholar 

  11. V. Yesudasu, H.S. Pradhan, R.J. Pandya, Recent progress in surface plasmon resonance based sensors: a comprehensive review. Heliyon 7(3), e06321 (2021)

    Article  Google Scholar 

  12. K. Chen, D. Yuan, Y. Zhao, Review of optical hydrogen sensors based on metal hydrides: recent developments and challenges. Optics Laser Technol (2021). https://doi.org/10.1016/j.optlastec.2020.106808

    Article  Google Scholar 

  13. A. Lavanya, G. Geetha, Broadband polarization filter based on hybrid silver-graphene coated pentagonal photonic crystal fiber. Opt Quantum Electron (2021). https://doi.org/10.1007/s11082-021-02767-5

    Article  Google Scholar 

  14. A.K. Shakya, S. Singh, Design and analysis of dual polarized Au and TiO2-coated photonic crystal fiber surface plasmon resonance refractive index sensor: an extraneous sensing approach. J Nanophotonics 15(1), 016009 (2021)

    Article  ADS  Google Scholar 

  15. A.K. Shakya, S. Singh, Design of dual polarized tetra core PCF based plasmonic RI sensor for visible-IR spectrum. Optics Communications (2021). https://doi.org/10.1016/j.optcom.2020.126372

    Article  Google Scholar 

  16. A.H. Aly, Z.A. Zaky, A.S. Shalaby, A.M. Ahmed, D. Vigneswaran, Theoretical study of hybrid multifunctional one-dimensional photonic crystal as a flexible blood sugar sensor. Physica Scripta 95(3), 035510 (2020)

    Article  Google Scholar 

  17. M. Yousufali, M.A. Mollah, K. Ahmed, Multimode interference-based photonic crystal fiber glucose sensor. Plasmonic (2021). https://doi.org/10.1007/s11468-020-01349-7

    Article  Google Scholar 

  18. S.A. Mitu, K. Ahmed, F.A.A. Zahrani, A. Grover, M.S.M. Rajan, Development and analysis of surface plasmon resonance based refractive index sensor for pregnancy testing. Optics Lasers Eng (2021). https://doi.org/10.1016/j.optlaseng.2021.106551

    Article  Google Scholar 

  19. S.N. Nangare, P.O. Patil, Affinity-based nanoarchitectured biotransducer for sensitivity enhancement of surface plasmon resonance sensors for in vitro diagnosis: a review. ACS Biomater Sci Eng (2021). https://doi.org/10.1021/acsbiomaterials.0c01203

    Article  Google Scholar 

  20. A.M. Dujon, B. Ujvari, F. Thomas, Cancer risk landscapes: a framework to study cancer in ecosystems. Sci Total Environ (2021). https://doi.org/10.1016/j.scitotenv.2020.142955

    Article  Google Scholar 

  21. Z. Deng, M. Xiao, D. Du, N. Luo, D. Liu, T. Liu, DNASE1L3 as a prognostic biomarker associated with immune cell infiltration in cancer. Onco Targets Ther (2021). https://doi.org/10.2147/OTT.S294332

    Article  Google Scholar 

  22. M.A. Jabin, M.I.M.J.R. Kawsar Ahmed, B.K. Paul, M. Islam, D. Vigneswaran, Surface plasmon resonance based titanium coated biosensor for cancer cell detection. IEEE Photonic J 11(4), 3700110 (2019)

    Article  Google Scholar 

  23. M.A. Jabin, K. Ahmed, M.J. Rana, B.K. Paul, M. Islam, Surface plasmon resonance based titanium coated biosensor for cancer cell detection. IEEE Photonics J. 11(4), 3700110 (2019)

    Article  Google Scholar 

  24. M.A. Mollah, Md. Yousufali, I.M. Ankan, M.M. Rahman, H. Sarker, K. Chakrabarti, Twin core photonic crystal fiber refractive index sensor for early detection of blood cancer. Sens Bio-Sens Res (2020). https://doi.org/10.1016/j.sbsr.2020.100344

    Article  Google Scholar 

  25. M.M.A. Eid, A.N.Z. Rashed, A.A.-M. Bulbul, E. Podder, Mono-rectangular core photonic crystal fiber (MRC-PCF) for skin and blood cancer detection. Plasmonics (2020). https://doi.org/10.1007/s11468-020-01334-0

    Article  Google Scholar 

  26. A. Panda, P.P. Devi, Photonic crystal biosensor for refractive index based cancerous cell detection. Opt Fiber Technol (2020). https://doi.org/10.1016/j.yofte.2019.102123

    Article  Google Scholar 

  27. M.A. Mollah, R.J. Usha, S. Tasnim, K. Ahmed, Detection of cancer affected cell using Sagnac interferometer based photonic crystal fiber refractive index sensor. Opt Quantum Electron (2020). https://doi.org/10.1007/s11082-020-02542-y

    Article  Google Scholar 

  28. G.P. Mishra, D. Kumar, V.S. Chaudhary, G. Murmu, Cancer cell detection by a heart-shaped dual-core photonic crystal fiber sensor. Appl. Opt. 59(33), 10321–10329 (2020)

    Article  ADS  Google Scholar 

  29. S. Das, S. Guha, P.P. Das, R.K. Ghadai, Analysis of morphological, microstructural, electrochemical and nano mechanical characteristics of TiCN coatings prepared under N2 gas flow rate by chemical vapour deposition (CVD) process at higher temperature. Ceram Int 46(8), 10292–10298 (2020)

    Article  Google Scholar 

  30. M. Rahman, F.A. Mou, M.I.H. Bhuiyan, M.R. Islam, Design and characterization of a circular sectored core cladding structured photonic crystal fiber with ultra-low EML and flattened dispersion in the THz regime. Opt Fiber Technol (2020). https://doi.org/10.1016/j.yofte.2020.102158

    Article  Google Scholar 

  31. V. Backman, M.B. Wallace, L.T. Perelman, J.T. Arendt, R. Gurjar, M.G. Müller, Q. Zhang, G. Zonios, E. Kline, T. McGillican, S. Shapshay, T. Valdez, K. Badizadegan, J.M. Crawford, M. Fitzmaurice, S. Kabani, H.S. Levin, M. Seiler, R.R. Dasari, I. Itz, Detection of preinvasive cancer cells. Nature (2000). https://doi.org/10.1038/35017638

    Article  Google Scholar 

  32. X.J. Liang, A.Q. Liu, C.S. Lim, T.C. Ayi, P.H. Yap, Determining refractive index of single living cell using an integrated microchip. Sens. Actuators, A 133(2), 349–354 (2007)

    Article  Google Scholar 

  33. M.H. Bitarafan, R.G. DeCorby, On-chip high-finesse fabry-perot microcavities for optical sensing and quantum information. Sensors 17(8), 1–19 (2017)

    Article  Google Scholar 

  34. K. Bai, J. Katz, On the refractive index of sodium iodide solutions for index matching in PIV. Exp Fluids (2014). https://doi.org/10.1007/s00348-014-1704-x

    Article  Google Scholar 

  35. N. Lue, G. Popescu, T. Ikeda, R.R. Dasari, K. Badizadegan, M.S. Feld, Live cell refractometry using microfluidic devices. Opt. Lett. 31(18), 2759–2761 (2006)

    Article  ADS  Google Scholar 

  36. C.L. Curl, C.J. Bellir, T. Harris, B.E. Allman, P.J. Harris, A.G. Stewart, A. Roberts, K.A. Nugent, L.M.D. Delbridge, Refractive index measurement in viable cells using quantitative phase-amplitude microscopy and confocal microscopy. Cytometry Part A: J Quantitative Cell Sci 65(1), 88–92 (2005)

    Article  Google Scholar 

  37. W.J. Choi, D.I. Jeon, S.-G. Ahn, J.-H. Yoon, S. Kim, B.H. Lee, Full-field optical coherence microscopy for identifying live cancer cells by quantitative measurement of refractive index distribution. Opt. Express 18(22), 23285–23295 (2010)

    Article  ADS  Google Scholar 

  38. J. Na, W.J. Choi, H.Y. Choi, S.Y. Ryu, E.S. Choi, B.H. Lee, Thickness and refractive index measurements by full-field optical coherence microscopy. IEEE Sens. J. 9(12), 1996–1997 (2009)

    Article  ADS  Google Scholar 

  39. J.-Y. Lee, C.-W. Lee, E.-H. Lin, P.-K. Wei, Single live cell refractometer using nanoparticle coated fiber tip. Appl Phys Lett (2008). https://doi.org/10.1063/1.3009205

    Article  Google Scholar 

  40. N. Lue, W. Choi, G. Popescul, Z. Yaqoob, K. Badizadegan, R.R. Dasari, M.S. Feld, Live cell refractometry using hilbert phase microscopy and confocal reflectance microscopy†. J Phys Chem A 113(47), 13327–13330 (2009)

    Article  Google Scholar 

  41. A.N. Yaroslavsky, R. Patel, E. Salomatina, C. Li, C. Lin, M. Al-Arashi, V. Neel, High-contrast mapping of basal cell carcinomas. Opt. Lett. 37(4), 644–646 (2012)

    Article  ADS  Google Scholar 

  42. Tsai C, Huang S (2012) Water distribution in cancer and normal cels

  43. T. Li, L. Zhu, X. Yang, X. Lou, L. Yu, A refractive index sensor based on h-shaped photonic crystal fibers coated with ag-graphene layers. Sensors 20(3), 741 (2020)

    Article  ADS  Google Scholar 

  44. M.I.A. Isti, H. Talukder, S.R. Islam, S. Nuzhat, A. Sanwar, Asymmetrical D-channel photonic crystal fiber-based plasmonic sensor using the wavelength interrogation and lower birefringence peak method. Results in Physics (2020). https://doi.org/10.1016/j.rinp.2020.103372

    Article  Google Scholar 

  45. W. Reeves, J. Knight, P. Russell, P. Roberts, Demonstration of ultra-flattened dispersion in photonic crystal fibers. Opt. Express 10(14), 609–613 (2002)

    Article  ADS  Google Scholar 

  46. N.R. Ramanujam, I.S. Amiri, S.A. Taya, S. Olyaee, R. Udaiyakumar, A.P. Pandian, K.S.J. Wilson, P. Mahalakshmi, P.P. Yupapin, Enhanced sensitivity of cancer cell using one dimensional nano. Microsyst Technol (2019). https://doi.org/10.1007/s00542-018-3947-6

    Article  Google Scholar 

  47. A.H. Aly, Z.A. Zaky, Ultra-sensitive photonic crystal cancer cells sensor with a high-quality factor. Cryogenics (2019). https://doi.org/10.1016/j.cryogenics.2019.102991

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to all anonymous reviewers, members of the board of Editors, and Editor-in-Chief for their comments, concerns, queries, and constructive suggestions. Authors are also thankful to All India Council of Technical Education, for AICTE NDF RPS project sanctioned order no: File No.8-2/RIFD/RPS-NDF/Policy-1/2018-19 dated 13 March 2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayushman Ramola.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramola, A., Marwaha, A. & Singh, S. Design and investigation of a dedicated PCF SPR biosensor for CANCER exposure employing external sensing. Appl. Phys. A 127, 643 (2021). https://doi.org/10.1007/s00339-021-04785-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04785-2

Keywords

Navigation