Skip to main content

Advertisement

Log in

Bone loss management in total knee revision surgery

  • Review Article
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Purpose

Bone stock reconstruction in TKR surgery is one of the biggest challenges for the surgeon. According to some, authors causes of bone stock loosening are multiple, including stress shielding, osteolysis from wear, septic or aseptic loosening, and bone loss caused by a poorly balanced implant. Moreover, bone loss may be iatrogenic at the time of implant removal, indicating that bone preservation during implant removal is critical.

Methods

Defect localization and extension affect the surgeon’s decisions about the choice of the surgical technique and the type of plant to be taken. Today there are several options available for bone deficiency treatment. The treatment choice is undoubtedly linked to the cause of revision, experience and personal philosophy, but it is necessary to consider also the patient's age, expectations of life, functional requirements and bone quality. Many authors prefer bone stock reconstruction techniques in patients with high bone quality and a better quality of life with more prospects. In patients with lower lease on life and lower bone quality the best bone replacement techniques are of modular systems, wedges, and augments. In cases with septic bone loss, more or less extended, different authors recommend reducing bone grafts in favor of modular prostheses to reduce the risk of graft contamination.

Results

All of these techniques have been shown to be durable in midterm outcomes, but concerns exist for a number of reasons, including disease transmission, resorption, fracture, immune reaction to allograft, the cost of custom prostheses, the inability to modify the construct intraoperatively and the overall technical challenge of applying these techniques.

Conclusions

The choice between different surgical options depends on bone defect dimension and characteristics but are also patient-related. Reestablishment of well-aligned and stable implants is necessary for successful reconstruction, but this can’t be accomplished without a sufficient restoration of an eventual bone loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Clatworthy MG, Ballance J, Brick GW, Chandler HP, Gross AE (2001) The use of structural allograft for uncontained defects in revision total knee arthroplasty. A minimum five-year review. J Bone Joint Surg Am 83-A(3):404–411

    CAS  PubMed  Google Scholar 

  2. Saleh KJ, Macaulay A, Raosevich DM et al (2001) The Knee Society Index of severity for failed total knee arthroplasty. Clin Orthop Relat Res 392:166–173

    Article  PubMed  Google Scholar 

  3. Engh GA, Ammen DJ (1995) Bone loss with revision total knee arthroplasty: defect classification and alternatives for reconstruction. Instr Course Lect 48:167–175

    Google Scholar 

  4. Engh GA, Ammeen DJ (1998) Classification and preoperative radiographic evaluation: knee. Orthop Clin N Am 29:205–217

    Article  CAS  Google Scholar 

  5. Merchant AC, Mercer RL, Jacobsen RH, Cool CR (1974) Roentgenographic analysis of patellofemoral congruence. J Bone Joint Surg Am 56(7):1391–1396

    CAS  PubMed  Google Scholar 

  6. Reish TG, Scott WN, Math KR (2004) Osteolysis around total knee arthroplasty diagnosis by multi-detector computer tomography. Proceedings of American Academy Orthopaedic Surgery, San Francisco

    Google Scholar 

  7. Lucey SD, Scuderi GR, Kelly MA et al (2000) A practical approach to dealing with bone loss in revision total knee arthroplasty. Orthop 23:1036–1041

    CAS  Google Scholar 

  8. Engh GA, Herzwurm PJ, Parks NL (1997) Treatment of major defects of bone with bulk allografts and stemmed components during total knee arthroplasty. J Bone and Joint Surg Am 79(7):1030–1039

    CAS  Google Scholar 

  9. Innocenti M, Matassi F, Carulli C, Soderi S, Villano M, Civinini R (2013) Joint line position in revision total knee arthroplasty: the role of posterior femoral off-set stems. Knee 20(6):447–450

    Article  PubMed  Google Scholar 

  10. Booth RE Jr, Engh GA, Laskin RS, Lotke PA, Jones RE, Vince KG (2006) What would you do? Case challenges in knee surgery. J Arthroplast 21(4 Suppl 1):61–67

    Article  Google Scholar 

  11. Nelson CL, Lonner JH, Rand JA, Lotke PA (2003) Strategies of stem fixation and the role of supplemental bone graft in revision total knee arthroplasty. J Bone Joint Surg Am 85-A(Suppl 1):S52–S57

    PubMed  Google Scholar 

  12. Toms AD, Barker RL, McCelland CL, Spencer-Jones R, Kuiper JH (2009) Repair of defects and containment in revision total knee replacement: a comparative biomechanical analysis. J Bone Joint Surg Br 91:271–277

    Article  CAS  PubMed  Google Scholar 

  13. Ritter MA, Keating EM, Faris PM (1993) Screw and cement fixation of large defects in total knee arthroplasty. A sequel. J Arthroplast 8(1):63–65

    Article  CAS  Google Scholar 

  14. Dorr LD (1989) Bone grafts for bone loss with total knee replacement. Orthop Clin N Am 20:179–187

    CAS  Google Scholar 

  15. Fosco M, Ben Ayad R, Luca A et al. (2012) Management of bone loss in primary and revision knee replacement. In Fokter SK (ed) Recent advances in hip and knee arthroplasty. InTech, Italy, pp 203–222

  16. Scott RD (1995) Bone loss: prosthetic and augmentation method. Orthopedics 18:923–926

    CAS  PubMed  Google Scholar 

  17. Ritter MA (1986) Screws and cement fixation of large defects in total knee arthroplasty. J Arthroplast 1(2):125–129

    Article  CAS  Google Scholar 

  18. Suarez MA, Murcia A, Maestro A (2002) Filling of segmental bone defects in revision knee arthroplasty using morsellized bone grafts contained within a metal mesh. Acta Orthop Belg 68:163–167

    Google Scholar 

  19. Toms AD, Barker RL, Jones RS, Kuiper JH (2004) Impaction bone-grafting in revision joint replacement surgery. J Bone Joint Surg Am 86:2050–2060

    PubMed  Google Scholar 

  20. Whiteside LA (1998) Morselized allografting in revision total knee arthroplasty. Orthop 21(9):1041–1043

    CAS  Google Scholar 

  21. Heyligers IC, Van Haaren EH, Wuisman PI (2001) Revision knee arthroplasty using impaction grafting and primary implants. J Arthroplast 16(4):533–537

    Article  CAS  Google Scholar 

  22. Whittaker JP, Dharmarajan R, Toms AD (2008) The management of bone loss in revision total knee replacement. J Bone Joint Surg Br 90(8):981–987

    Article  CAS  PubMed  Google Scholar 

  23. Tagil M, Aspenberg P (1998) Impaction of cancellous bone grafts impairs osteoconduction in titanium chambers. Clin Orthop Relat Res 352:231–238

    PubMed  Google Scholar 

  24. Linder L (2000) Cancellous impaction grafting in the human femur: histological and radiographic observations in 6 autopsy femurs and 8 biopsies. Acta Orthop Scand 71:543–552

    Article  CAS  PubMed  Google Scholar 

  25. Tsiridis E, Narvani AA, Haddad FS, Timperley JA, Gie GA (2004) Impaction femoral allografting and cemented revision for periprosthetic femoral fractures. J Bone Joint Surg Br 86:1124–1132

    Article  CAS  PubMed  Google Scholar 

  26. Tang T, Dai K, Zhu N, Chen Y (2001) A histomorphometric and molecular study on stress adaptability of freeze-dried bone allograft. Chin Med J (Engl) 114:1189–1192

    CAS  Google Scholar 

  27. Yan CH, Chiu KY, Ng TP, Ng FY (2010) Revision total hip arthroplasty with femoral impaction bone grafting. J Orthop Surg (Hong Kong) 18:303–308

    Google Scholar 

  28. Judas F, Figueiredo M, Cabrita A, Proena A (2005) Incorporation of impacted morselized bone allografts in rabbits. Transplant Proc 37(6):2802–2804

    Article  CAS  PubMed  Google Scholar 

  29. Pour AE, Parvizi J, Sienker N, Purtill JJ, Sharkey PF (2007) Rotating hinge total knee replacement: use with caution. J Bone Joint Surg Am 89a:1735–1741

    Article  Google Scholar 

  30. Radnay CS, Scuderi GR (2006) Management of bone loss: augments, cones, offset stems. Clin Orthop Relat Res 446:83–92

    Article  PubMed  Google Scholar 

  31. Brand MG, Daley RJ, Ewald FC, Scott RD (1989) Tibial tray augmentation with modular metal wedges for tibial bone stock deficiency. Clin Orthop Relat Res 248:71–79

    PubMed  Google Scholar 

  32. Hockman DE, Ammeen D, Engh GA (2005) Augments and allografts in revision total knee arthroplasty. J Arthroplasty 20:35–41

    Article  PubMed  Google Scholar 

  33. Brooks PJ, Walker PS, Scott RD (1984) Tibial component fixation in deficient tibial bone stock. Clin Orthop Related Res 184:302–308

    Google Scholar 

  34. Patel JV, Masonis JL, Guerin J, Bourne RB, Rorabeck CH (2004) The fate of augments to treat type-2 bone defects in revision arthroplasty. J Bone and Joint Surg Br 86:195–199

    Article  CAS  Google Scholar 

  35. Brand MG, Daley RJ, Ewald FC et al (1989) Tibial tray augmentation with modular metal wedges for tibial bone stock deficiency. Clin Orthop Relat Res 248:71–79

    PubMed  Google Scholar 

  36. Pagnano MW, Trousdle RT, Rand JA (1995) Tibial wedge augmentation for bone deficiency in total knee arthroplasty. A follow-up study Clin Orthop Related Res 321:151–155

    Google Scholar 

  37. Takagi H, Iwata H, Ishiguro N, Kojima T, Oguchi T (2001) Tibial wedge augmentation in total knee arthroplasty. Clin Rheumatol 13:289–292

    Google Scholar 

  38. Werle JR, Goodman SB, Imrie SN (2002) Revision total knee arthroplasty using large distal femoral augments for severe metaphyseal bone deficiency: a preliminary study. Orthopedics 25:325–327

    PubMed  Google Scholar 

  39. Gofton WT, Tsigaras H, Butler RA, Patterson JJ, Barrack RL, Rorabeck CH (2002) Revision total knee arthroplasty: fixation with modular stems. Clin Orthop Relat Res 404:158–168

    Article  PubMed  Google Scholar 

  40. Stuchin SA (1993) Allografting in total knee replacement arthroplasty. Semin Arthroplast 4:117–122

    CAS  Google Scholar 

  41. Tigani D, Sabbioni G, Raimondi A (2009) Early aseptic loosening of a porous tantalum knee prosthesis. Chirurgia Organi Movimento 93:187–191

    CAS  Google Scholar 

  42. Backstein D, Safir O, Gross A (2006) Management of bone loss: structural grafts in revision total knee arthroplasty. Clin Orthop Related Res 446:104–112

    Article  Google Scholar 

  43. Mc Allister DR, Joyce MJ, Mann BJ, Vangsness CT (2007) Allograft update: the current status of tissue regulation, procurement, processing, and sterilization. Am J Sports Med 35:2148–2158

    Article  Google Scholar 

  44. Dennis DA, Little LR (2005) The structural allograft composite in revision total knee arthroplasty. Orthopedics 28:1005–1007

    PubMed  Google Scholar 

  45. Eldridge J, Hubble M, Nelson K, Smith E, Learmonth I (1997) The effect of bone chip size on initial stability following femoral impaction grafting. J Bone and Joint Surg Br 79(Suppl 3):S364

    Google Scholar 

  46. Bolder SB, Schreurs BW, Verdonschot N, van Unen JM, Gardeniers JW, Slooff TJ (2003) Particle size of bone graft and method of impaction affect initial stability of cemented cups: human cadaveric and synthetic pelvic specimen studies. Acta Orthop Scand 74:652–657

    Article  PubMed  Google Scholar 

  47. Dennis DA (2002) The structural allograft composite in revision total knee arthroplasty. J Arthroplast 17(4 Suppl 1):90–93

    Article  Google Scholar 

  48. Engh GA, Ammeen DJ (2007) Use of structural allograft in revision total knee arthroplasty in knees with severe tibial bone loss. J Bone and Joint Surg Am 89(12):2640–2647

    Article  Google Scholar 

  49. Meneghini RM, Lewallen DG, Hanssen AD (2009) Use of porous tantalum metaphyseal cones for severe tibial bone loss during revision total knee replacement. Surgical technique. J Bone Joint Surg Am 91(Suppl 2 Pt 1):131–138

    PubMed  Google Scholar 

  50. Lachiewicz B, Handerson RA, Soileau E, Vail TP (2012) Can tantalum cones provide fixation in complex revision knee arthroplasty? Clin Orthop Relat Res 470:199–204

    Article  PubMed  Google Scholar 

  51. Meneghini RM, Lewallen DG, Hanssen AD (2008) Use the porous tantalum metaphyseal cones for severe tibial bone loss during revision total knee replacement. J Bone Joint Surg 90:78–84

    Article  PubMed  Google Scholar 

  52. Howard JL, Kudera LE, Wallen DG, Hanssen AD (2011) Early results of the use of tantalum femoral cones for revision total knee arthroplasty. J Bone Joint Surg 93:478–484

    Article  PubMed  Google Scholar 

  53. Maccauro G, Iommetti PR, Muratori F, Raffaelli L, Manicone PF, Fabbriciani C (2009) An overview about biomedical applications of micron and nano size tantalum. Recent Patents Biotechnol 3:157–165

    Article  CAS  Google Scholar 

  54. Henricson A, Linder L, Nilsson KG (2008) A trabecular metal tibial component in total knee replacement in patients younger than 60 years: a two-year radiostereophotogrammetric analysis. J Bone Joint Surg Br 90:1585–1593

    Article  CAS  PubMed  Google Scholar 

  55. Jafarim A, Coyle C, Huang R, Austin M, Orozco F, Ong A (2011) Revision total knee arthroplasty using metaphyseal sleeves and short term follow up. Lombardi AV (ed) Annual Meeting American Academy of Orthophaedic Surgeons. San Diego

  56. Pagnottom, Fedorka J, McGough R, Crossett I, Klatt B, Keating M (2011) Revision total knee replacement with porous coated metaphyseal sleeves. Lombardi AV (ed) Annual meeting 2011 American Academy of Orthopaedic Surgeons San Diego.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriele Panegrossi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panegrossi, G., Ceretti, M., Papalia, M. et al. Bone loss management in total knee revision surgery. International Orthopaedics (SICOT) 38, 419–427 (2014). https://doi.org/10.1007/s00264-013-2262-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-013-2262-1

Keywords

Navigation