Skip to main content
Log in

Multimodality imaging: an update on PET/CT technology

  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Introduction

Since their introduction in 2001, PET/CT systems have gained wide acceptance primarily due to their inherent ability to combine functional and structural information about the underlying disease state of the patient in a single imaging session. Their significance has also been documented with regard to their short imaging times, which minimize patient anxiety and image blurring due to patient motion. In the past seven years, PET/CT systems have replaced dedicated PET systems as the imaging modality of choice for diagnostic evaluation of oncology patients.

Objectives

The purpose of this article is to review the evolution of PET/CT systems and document their current status.

Discussion

Recent improvements in instrumentation are highlighted together with some outstanding issues that arise for specific PET/CT applications. These are followed by a description of some of the more common clinical applications of PET/CT imaging such as staging malignant disease, treatment planning, and monitoring therapy response. Finally, the future developments of PET/CT systems with regard to sensitivity, resolution, and new radiopharmaceuticals are discussed. The article concludes by presenting some issues concerning the next stage in the future of PET imaging, namely PET/MRI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Beyer T, Townsend DW, Brun T, Kinahan PE, Charron M, Roddy R, et al. A combined PET/CT scanner for clinical oncology. J Nucl Med 2000;41:1369–79.

    PubMed  CAS  Google Scholar 

  2. Charron M, Beyer T, Bohnen NN, Kinahan PE, Dachille M, Jerin J, et al. Image analysis in patients with cancer studied with a combined PET and CT scanner. Clin Nucl Med 2000;25:905–10.

    Article  PubMed  CAS  Google Scholar 

  3. Meltzer CC, Luketich JD, Friedman D, Charron M, Strollo D, Meehan M, et al. Whole-body FDG positron emission tomographic imaging for staging esophageal cancer comparison with computed tomography. Clin Nucl Med 2000;25:882–7.

    Article  PubMed  CAS  Google Scholar 

  4. Kluetz PG, Meltzer CC, Villemagne VL, Kinahan PE, Chander S, Martinelli MA, et al. Combined PET/CT imaging in oncology. Impact on patient management. Clin Positron Imaging 2000;3:223–30.

    Article  PubMed  Google Scholar 

  5. Townsend DW, Beyer T, Blodgett TM. PET/CT scanners: a hardware approach to image fusion. Semin Nucl Med 2003;33:193–204.

    Article  PubMed  Google Scholar 

  6. Kinahan PE, Townsend DW, Beyer T, Sashin D. Attenuation correction for a combined 3D PET/CT scanner. Med Phys 1998;25:2046–53.

    Article  PubMed  CAS  Google Scholar 

  7. Kinahan PE, Hasegawa BH, Beyer T. X-ray-based attenuation correction for positron emission tomography/computed tomography scanners. Semin Nucl Med 2003;33:166–79.

    Article  PubMed  Google Scholar 

  8. Watson CC, Townsend DW, Bendriem B. PET/CT systems. In: Aarsvold WAJ, editor. Emission tomography. London: Elsevier Science; 2004. p. 195–212.

    Google Scholar 

  9. Burger C, Goerres G, Schoenes S, Buck A, Lonn AH, Von Schulthess GK. PET attenuation coefficients from CT images: experimental evaluation of the transformation of CT into PET 511-keV attenuation coefficients. Eur J Nucl Med Mol Imaging 2002;29:922–7.

    Article  PubMed  CAS  Google Scholar 

  10. Watson CC, Rappoport V, Faul D, Townsend DW, Carney JP. A method for calibrating the CT-based attenuation correction of PET in human tissue. IEEE Trans Nucl Sci 2006;53:102–7.

    Article  CAS  Google Scholar 

  11. Carney JP, Townsend DW. CT-based attenuation correction for PET/CT scanners. In: von Schulthess GK, editor. Clinical molecular anatomic imaging: PET-CT and SPECT-CT. Philadelphia: Lippincott Williams and Wilkins; 2006. p. 54–62.

    Google Scholar 

  12. Budinger TF. Time-of-flight positron emission tomography: status relative to conventional PET. J Nucl Med 1983;24:73–8.

    PubMed  CAS  Google Scholar 

  13. Surti S, Kuhn A, Werner ME, Perkins AE, Kolthammer J, Karp JS. Performance of Philips Gemini TF PET/CT scanner with special consideration for its time-of-flight imaging capabilities. J Nucl Med 2007;48:471–80.

    PubMed  Google Scholar 

  14. Conti M, Townsend DW, Casey M, Lois C, Jakoby BW, Long MJ, et al. Assessment of the clinical potential of a time-of-flight PET/CT scanner with less than 600 ps timing resolution. J Nucl Med 2008;49:411.

    Google Scholar 

  15. Muehllehner G, Karp JS. Positron emission tomography. Phys Med Biol 2006;51:R117–37.

    Article  PubMed  CAS  Google Scholar 

  16. Jakoby BW, Bercier Y, Watson CC, Rappoport V, Young J, Bendriem DW. Physical performance and clinical workflow of a new LSO HI-REZ PET/CT scanner. Nuclear Science Symposium Conference Record, 2006, IEEE, vol. 5, p 3130–4.

  17. Townsend DW, Jakoby B, Long MJ, Carr C, Hubner K, Guglielmo C. Performance and clinical workflow of a new combined PET/CT scanner. J Nucl Med 2007;48:437.

    Google Scholar 

  18. Kinahan P, Rodgers JG. Analytic 3D image reconstruction using all detected events. IEEE Trans Nucl Sci 1989;36:964–8.

    Article  CAS  Google Scholar 

  19. Defrise M, Kinahan PE, Townsend DW, Michel C, Sibomana M, Newport DF. Exact and approximate rebinning algorithms for 3-D PET data. IEEE Trans Med Imaging 1997;16:145–58.

    Article  PubMed  CAS  Google Scholar 

  20. Hudson HM, Larkin RS. Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imaging 1994;13:601–9.

    Article  PubMed  CAS  Google Scholar 

  21. Comtat C, Kinahan P, Defrise M, Michel C, Townsend DW. Fast reconstruction of 3D PET data with accurate statistical modeling. IEEE Trans Nucl Sci 1998;45:1083–9.

    Article  Google Scholar 

  22. Comtat C, Bataille F, Michel C, Jones JP, Sibomana M, Janeiro L, et al. OSEM-3D reconstruction strategies for the ECAT HRRT. Nuclear Science Symposium Conference Record, 2004, IEEE, vol. 6, p 3492–6.

  23. Liu X, Comtat C, Michel C, Kinahan P, Defrise M, Townsend D. Comparison of 3-D reconstruction with 3D-OSEM and with FORE+OSEM for PET. IEEE Trans Med Imaging 2001;20:804–14.

    Article  PubMed  CAS  Google Scholar 

  24. Panin VY, Kehren F, Michel C, Casey M. Fully 3-D PET reconstruction with system matrix derived from point source measurements. IEEE Trans Med Imaging 2006;25:907–21.

    Article  PubMed  Google Scholar 

  25. de Juan R, Seifert B, Berthold T, von Schulthess GK, Goerres GW. Clinical evaluation of a breathing protocol for PET/CT. Eur Radiol 2004;14:1118–23.

    Article  PubMed  Google Scholar 

  26. Klein GJ, Reutter BW, Ho MH, Reed JH, Huesman RH. Real-time system for respiratory-cardiac gating in positron tomography. IEEE Trans Nucl Sci 1998;45:2139–43.

    Article  Google Scholar 

  27. Nehmeh SA, Erdi YE, Ling CC, Rosenzweig KE, Schoder H, Larson SM, et al. Effect of respiratory gating on quantifying PET images of lung cancer. J Nucl Med 2002;43:876–81.

    PubMed  Google Scholar 

  28. Nehmeh SA, Erdi YE, Rosenzweig KE, Schoder H, Larson SM, Squire OD, et al. Reduction of respiratory motion artifacts in PET imaging of lung cancer by respiratory correlated dynamic PET: methodology and comparison with respiratory gated PET. J Nucl Med 2003;44:1644–8.

    PubMed  Google Scholar 

  29. Thorndyke B, Schreibmann E, Maxim P, Loo B, Boyer A, Koong A, et al. Enhancing 4D PET through retrospective stacking. Med Phys 2005;32:2094.

    Google Scholar 

  30. Klein GJ, Huesman RH. Four-dimensional processing of deformable cardiac PET data. Med Image Anal 2002;6:29–46.

    Article  PubMed  Google Scholar 

  31. Livieratos L, Stegger L, Bloomfield PM, Schafers K, Bailey DL, Camici PG. Rigid-body transformation of list-mode projection data for respiratory motion correction in cardiac PET. Phys Med Biol 2005;50:3313–22.

    Article  PubMed  CAS  Google Scholar 

  32. Lamare F, Cresson T, Savean J, Cheze Le Rest C, Reader AJ, Visvikis D. Respiratory motion correction for PET oncology applications using affine transformation of list mode data. Phys Med Biol 2007;52:121–40.

    Article  PubMed  CAS  Google Scholar 

  33. Lalush DS, Cui L, Tsui B. A priori motion models for four-dimensional reconstruction in gated cardiac SPECT. Nuclear Science Symposium Conference Record, 1996, IEEE, vol. 3.

  34. Qi J, Huesmans RH. List mode reconstruction for PET with motion compensation: a simulation study. Proceedings Nuclear Symposium Biological Imaging Conference, 2002, p 413–6.

  35. Gilland DR, Mair BA, Bowsher JE, Jaszczak RJ. Simulations reconstruction and motion estimation for gated cardiac ECT. IEEE Trans Nucl Sci 2002;49:2344–9.

    Article  Google Scholar 

  36. Cao Z, GD R, Mair BA, Jaszczak RJ. Three-dimensional motion estimation with image reconstruction for gated cardiac. ECT IEEE Trans Nucl Sci. 2003;50:384–8.

    Google Scholar 

  37. Jacobson MW, Fessler JA. Joint estimation of image and deformation parameters in motion-correction PET. Nuclear Symposium and Medical Imaging Conference Record, 2004, IEEE, vol. 5, p 3290–4.

  38. Rahmim A, Bloomfield P, Houle S, Lenox M, Michel C, Buckley KR, et al. Motion compensation in histogram-mode and list-mode EM reconstructions: beyond the event-driven approach. IEEE Trans Nucl Sci 2004;51:2588–96.

    Article  Google Scholar 

  39. Gilland DR, Mair BA, Sun J. Joint 4D reconstruction and motion estimation in gated cardiac ECT. Proceedings of the Eighth International Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine, Salt Lake City, 6–9 July 2005. p 303–6.

  40. Gravier E, Yang Y. Motion-compensated reconstruction of tomographic image sequences. IEEE Trans Nucl Sci 2005;51:51–6.

    Article  Google Scholar 

  41. Qiao F, Pan T, Clark JW Jr, Mawlawi OR. A motion-incorporated reconstruction method for gated PET studies. Phys Med Biol 2006;51:3769–83.

    Article  PubMed  Google Scholar 

  42. Nehmeh SA, Erdi YE, Meirelles G, et al. Deep-inspiration breathhold PET/CTof the thorax. J Nucl Med 2006;48:22–6.

    Google Scholar 

  43. Meirelles G, Erdi YE, Nehmeh SA, et al. Deep-inspiration breathhold PET/CT: clinical findings with a new technique for detection and characterization of thoracic lesions. J Nucl Med 2006;48:712–9.

    Article  Google Scholar 

  44. Kawano T, Ohtake E, Inoue T. Deep-inspiration breath hold PET/CT of lung cancer: maximum standardized uptake value analysis of 108 patients. J Nucl Med 2008;49:1223–31.

    Article  PubMed  Google Scholar 

  45. Soret M, Bacharach SL, Buvat I. Partial volume effect in PET tumor imaging. J Nucl Med 2007;48:932.

    Article  PubMed  Google Scholar 

  46. Mah K, Caldwell CB, Ung YC, Danjoux CE, Balogh JM, Ganguli SN, et al. The impact of (18)FDG-PET on target and critical organs in CT-based treatment planning of patients with poorly defined non-small-cell lung carcinoma: a prospective study. Int J Radiat Oncol Biol Phys 2002;52:339–50.

    PubMed  Google Scholar 

  47. Nestle U, Walter K, Schmidt S, Licht N, Nieder C, Motaref B, et al. 18F-deoxyglucose positron emission tomography (FDG-PET) for the planning of radiotherapy in lung cancer: high impact in patients with atelectasis. Int J Radiat Oncol Biol Phys 1999;44:593–7.

    Article  PubMed  CAS  Google Scholar 

  48. Black QC, Grills IS, Kestin LL, Wong CY, Wong JW, Martinez AA, et al. Defining a radiotherapy target with positron emission tomography. Int J Radiat Oncol Biol Phys 2004;60:1272–82.

    PubMed  Google Scholar 

  49. Biehl KJ, Kong FM, Dehdashti F, Jin JY, Mutic S, El Naqa I, et al. 18F-FDG PET definition of gross tumor volume for radiotherapy of non-small cell lung cancer: is a single standardized uptake value threshold approach appropriate? J Nucl Med 2006;47:1808–12.

    PubMed  Google Scholar 

  50. Nestle U, Kremp S, Schaefer-Schuler A, Sebastian-Welsch C, Hellwig D, Rube C, et al. Comparison of different methods for delineation of 18F-FDG PET-positive tissue for target volume definition in radiotherapy of patients with non-small cell lung cancer. J Nucl Med 2005;46:1342–8.

    PubMed  Google Scholar 

  51. Erdi YE, Mawlawi O, Larson SM, Imbriaco M, Yeung H, Finn R, et al. Segmentation of lung lesion volume by adaptive positron emission tomography image thresholding. Cancer 1997;80(12 Suppl):2505–9.

    Article  PubMed  CAS  Google Scholar 

  52. Daisne JF, Sibomana M, Bol A, Doumont T, Lonneux M, Gregoire V. Tri-dimensional automatic segmentation of PET volumes based on measured source-to-background ratios: influence of reconstruction algorithms. Radiother Oncol 2003;69:247–50.

    Article  PubMed  Google Scholar 

  53. Jentzen W, Freudenberg L, Eising EG, Heinze M, Brandau W, Bockisch A, et al. Segmentation of PET volumes by iterative image thresholding. J Nucl Med 2007;48:108–14.

    PubMed  CAS  Google Scholar 

  54. Drever L, Roa W, McEwan A, Robinson D. Iterative threshold segmentation for PET target volume delineation. Med Phys 2007;34:1253–65.

    Article  PubMed  Google Scholar 

  55. Erdi YE, Nehmeh SA, Pan T, Pevsner A, Rosenzweig KE, Mageras G, et al. The CT motion quantitation of lung lesions and its impact on PET-measured SUVs. J Nucl Med 2004;45:1287–92.

    PubMed  Google Scholar 

  56. Pan T, Mawlawi O, Nehmeh SA, Erdi YE, Luo D, Liu HH, et al. Attenuation correction of PET images with respiration-averaged CT images in PET/CT. J Nucl Med 2005;46:1481–7.

    PubMed  Google Scholar 

  57. Delbeke D, Coleman RE, Guiberteau MJ, Brown ML, Royal HD, Siegel BA, et al. Procedure guideline for tumor imaging with 18F-FDG PET/CT 1.0. J Nucl Med 2006;47:885–95.

    PubMed  Google Scholar 

  58. Defrise M, Casey ME, Michel C, Conti M. Fourier rebinning of time-of-flight PET data. Phys Med Biol 2005;50:2749–63.

    Article  PubMed  Google Scholar 

  59. Vandenberghe S, Daube-Witherspoon ME, Lewitt RM, Karp JS. Fast reconstruction of 3D time-of-flight PET data by axial rebinning and transverse mashing. Phys Med Biol 2006;51:1603–21.

    Article  PubMed  Google Scholar 

  60. Cho S, Li Q, Ahn S, Bai B, Leahy RM. Iterative image reconstruction using inverse fourier rebinning for fully 3-D PET. IEEE Trans Med Imaging 2007;26:347–58.

    Article  PubMed  Google Scholar 

  61. Kao CM. Windowed image reconstruction for time-of-flight positron emission tomography. Phys Med Biol 2008;53:3431–45.

    Article  PubMed  Google Scholar 

  62. Czernin J, Auerbach MA. Clinical PET/CT imaging: promises and misconceptions. Nuklearmedizin 2005;44(Suppl 1):S18–23.

    PubMed  Google Scholar 

  63. Czernin J, Allen-Auerbach M, Schelbert HR. Improvements in cancer staging with PET/CT: literature-based evidence as of September 2006. J Nucl Med 2007;48(Suppl 1):78S–88S.

    PubMed  CAS  Google Scholar 

  64. Weber WA, Grosu AL, Czernin J. Technology insight: advances in molecular imaging and an appraisal of PET/CT scanning. Nat Clin Pract Oncol 2008;5:160–70.

    Article  PubMed  CAS  Google Scholar 

  65. Hillner BE, Siegel BA, Liu D, Shields AF, Gareen IF, Hanna L, et al. Impact of positron emission tomography/computed tomography and positron emission tomography (PET) alone on expected management of patients with cancer: initial results from the National Oncologic PET Registry. J Clin Oncol 2008;26:2155–61.

    Article  PubMed  Google Scholar 

  66. Gregoire V, Haustermans K, Geets X, Roels S, Lonneux M. PET-based treatment planning in radiotherapy: a new standard? J Nucl Med 2007;48(Suppl 1):68S–77S.

    PubMed  CAS  Google Scholar 

  67. Antoch G, Saoudi N, Kuehl H, Dahmen G, Mueller SP, Beyer T, et al. Accuracy of whole-body dual-modality fluorine-18-2-fluoro-2-deoxy-D-glucose positron emission tomography and computed tomography (FDG-PET/CT) for tumor staging in solid tumors: comparison with CT and PET. J Clin Oncol 2004;22:4357–68.

    Article  PubMed  Google Scholar 

  68. Ciernik IF, Dizendorf E, Baumert BG, Reiner B, Burger C, Davis JB, et al. Radiation treatment planning with an integrated positron emission and computer tomography (PET/CT): a feasibility study. Int J Radiat Oncol Biol Phys 2003;57:853–63.

    PubMed  Google Scholar 

  69. Ling CC, Humm J, Larson S, Amols H, Fuks Z, Leibel S, et al. Towards multidimensional radiotherapy (MD-CRT): biological imaging and biological conformality. Int J Radiat Oncol Biol Phys 2000;47:551–60.

    Article  PubMed  CAS  Google Scholar 

  70. Schwartz DL, Ford EC, Rajendran J, Yueh B, Coltrera MD, Virgin J, et al. FDG-PET/CT-guided intensity modulated head and neck radiotherapy: a pilot investigation. Head Neck 2005;27:478–87.

    Article  PubMed  Google Scholar 

  71. Gilman MD, Fischman AJ, Krishnasetty V, Halpern EF, Aquino SL. Hybrid PET/CT of the thorax: when is computer registration necessary? J Comput Assist Tomogr 2007;31:395–401.

    Article  PubMed  Google Scholar 

  72. Greco C, Rosenzweig K, Cascini GL, Tamburrini O. Current status of PET/CT for tumour volume definition in radiotherapy treatment planning for non-small cell lung cancer (NSCLC). Lung Cancer 2007;57:125–34.

    Article  PubMed  Google Scholar 

  73. Messa C, Ceresoli GL, Rizzo G, Artioli D, Cattaneo M, Castellone P, et al. Feasibility of [18F]FDG-PET and coregistered CT on clinical target volume definition of advanced non-small cell lung cancer. Q J Nucl Med Mol Imaging 2005;49:259–66.

    PubMed  CAS  Google Scholar 

  74. Deniaud-Alexandre E, Touboul E, Lerouge D, Grahek D, Foulquier JN, Petegnief Y, et al. Impact of computed tomography and 18F-deoxyglucose coincidence detection emission tomography image fusion for optimization of conformal radiotherapy in non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 2005;63:1432–41.

    Article  PubMed  Google Scholar 

  75. Cherry SR. The 2006 Henry N. Wagner Lecture: Of mice and men (and positrons)—advances in PET imaging technology. J Nucl Med 2006;47:1735–45.

    PubMed  CAS  Google Scholar 

  76. Townsend DW. Multimodality imaging of structure and function. Phys Med Biol 2008;53:R1–39.

    Article  PubMed  CAS  Google Scholar 

  77. Wong W, Zhang Y, Liu S, Li H, Baghaei H, Ramirez RA, et al. Feasibility studies of an affordable high resolution 1 meter long PET. J Nucl Med 2008;49(Suppl 1):4110.

    Google Scholar 

  78. Conti M, Bendriemj B, Casey M. Performance of a high sensitivity PET scanner based on LSO panel detectors. IEEE Trans Nucl Sci 2006;53:1136–42.

    Article  Google Scholar 

  79. Watanabe M, Shimuzu K, Omura T. A high-throughput whole-body PET scanner using flat panel PS-PMTs. IEEE Trans Nucl Sci 2004;51:796–800.

    Article  Google Scholar 

  80. Derenzo SE. Mathematical removal of positron range blurring in high-resolution tomography. IEEE Trans Nucl Sci 1986;33:565–9.

    Article  Google Scholar 

  81. Moses WW, Derenzo SE, Melcher CL, Manente RA. A room temperature LSO/Pin photodiode PET detector module that measures depth of interaction. IEEE Trans Nucl Sci 1995;42:1085–9.

    Article  Google Scholar 

  82. Dahlbom M, MacDonald LR, Eriksson L, Paulus M, Andreaco M, Casey ME, et al. Performance of a YSO/LSO phoswitch detector for use in a PET/SPECT system. IEEE Trans Nucl Sci 1998;44:1114–9.

    Article  Google Scholar 

  83. Wienhard K, Schmand M, Casey ME, Baker K, Bao J, Eriksson L, et al. The ECAT HRRT: performance and first clinical application of the new high resolution research tomograph. IEEE Trans Nucl Sci 2002;49:104–10.

    Article  Google Scholar 

  84. Stocklin GL. Is there a future for clinical fluorine-18 radiopharmaceuticals (excluding FDG)? Eur J Nucl Med 1998;25:1612–6.

    PubMed  CAS  Google Scholar 

  85. Varagnolo L, Stokkel MP, Mazzi U, Pauwels EK. 18F-labeled radiopharmaceuticals for PET in oncology, excluding FDG. Nucl Med Biol 2000;27:103–12.

    Article  PubMed  CAS  Google Scholar 

  86. Shiue CY, Welch MJ. Update on PET radiopharmaceuticals: life beyond fluorodeoxyglucose. Radiol Clin North Am 2004;42:1033–1053. viii.

    Article  PubMed  Google Scholar 

  87. Couturier O, Luxen A, Chatal JF, Vuillez JP, Rigo P, Hustinx R. Fluorinated tracers for imaging cancer with positron emission tomography. Eur J Nucl Med Mol Imaging 2004;31:1182–206.

    Article  PubMed  CAS  Google Scholar 

  88. Vallabhajosula S. 18F-labeled positron emission tomographic radiopharmaceuticals in oncology: an overview of radiochemistry and mechanisms of tumor localization. Semin Nucl Med 2007;37:400–19.

    Article  PubMed  Google Scholar 

  89. Groves AM, Win T, Haim SB, Ell PJ. Non-[18F]FDG PET in clinical oncology. Lancet Oncol 2007;8:822–30.

    Article  PubMed  Google Scholar 

  90. Christensen N, Hammer B, Heil B, Fetterly K. Positron emission tomography within a magnetic field using phototubes and lightguides. Phys Med Biol 1995;40:691–7.

    Article  PubMed  CAS  Google Scholar 

  91. Buchanan M. A system to obtain radiotracer uptake data simultaneously with NMR spectra in a high field magnet. IEEE Trans Nucl Sci 1996;43:2044–8.

    Article  CAS  Google Scholar 

  92. Shao Y, Cherry SR, Farahani K, Slates R, Silverman RW, Meadors K, et al. Development of a PET detector system compatible with MRI/NMR systems. IEEE Trans Nucl Sci 1997;44:1167–71.

    Article  CAS  Google Scholar 

  93. Slates R, Cherry S, Boutefnouchet A, Shao Y, Dahlborn M, Farahani K. Design of a small animal MR compatible PET scanner. IEEE Trans Nucl Sci 1999;46:565–70.

    Article  Google Scholar 

  94. Catana C, Wu Y, Judenhofer MS, Qi J, Pichler BJ, Cherry SR. Simultaneous acquisition of multislice PET and MR images: initial results with a MR-compatible PET scanner. J Nucl Med 2006;47:1968–76.

    PubMed  Google Scholar 

  95. Judenhofer MS, Catana C, Swann BK, Siegel SB, Jung WI, Nutt RE, et al. PET/MR images acquired with a compact MR-compatible PET detector in a 7-T magnet. Radiology 2007;244:807–14.

    Article  PubMed  Google Scholar 

  96. Pichler BJ, Swann BK, Rochelle J, Nutt RE, Cherry SR, Siegel SB. Lutetium oxyorthosilicate block detector readout by avalanche photodiode arrays for high resolution animal PET. Phys Med Biol 2004;49:4305–19.

    Article  PubMed  CAS  Google Scholar 

  97. Pichler BJ, Judenhofer MS, Catana C, Walton JH, Kneilling M, Nutt RE. Performance test of an LSO-APD detector in a 7-T MRI scanner for simultaneous PET/MRI. J Nucl Med 2006;47:639–47.

    PubMed  Google Scholar 

  98. Burbar Z, Graxioso R, Corbeil JL, et al. PET performance of PET/MR brain insert tomograph (abstract). Nuclear Science Symposium and Medical Imaging Conference Record, 2006. IEEE, p 116.

  99. Schmand M, Burbar Z, Corbeil J, Zhang N, Michael C, Byars L, et al. BrainPET: first human tomograph for simultaneous (functional) PET and MR imaging. J Nucl Med 2007;48(Suppl 2):45P.

    Google Scholar 

  100. Schlemmer HP, Pichler BJ, Schmand M, Burbar Z, Michel C, Ladebeck R, et al. Simultaneous PET/MR imaging of the human brain: feasibility study. Radiology 2008;248:1028–35.

    Article  PubMed  Google Scholar 

  101. Kops RR, Qin P, Mueller-Veggian M, Herzog H. Attenuation correction of PET scanning based on MR images. Nuclear Science Symposium and Medical Imaging Conference Record, 2006, IEEE.

  102. Hofmann M, Steinke F, Scheel V, Charpiat G, Brady M, Schoelkopf B, et al. MR-based PET attenuation correction – method and validation (abstract). Nuclear Science Symposium and Medical Imaging Conference, 2007, IEEE, M16-6.

  103. Zaidi H, Mawlawi O, Orton CG. Point/counterpoint. Simultaneous PET/MR will replace PET/CT as the molecular multimodality imaging platform of choice. Med Phys 2007;34:1525–8.

    Article  PubMed  Google Scholar 

Download references

Conflicts of interest

D. W. Townsend is a consultant for Siemens Molecular Imaging. O. Mawlawi has no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osama Mawlawi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mawlawi, O., Townsend, D.W. Multimodality imaging: an update on PET/CT technology. Eur J Nucl Med Mol Imaging 36 (Suppl 1), 15–29 (2009). https://doi.org/10.1007/s00259-008-1016-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-008-1016-6

Keywords

Navigation