Skip to main content
Log in

Generation of consistent skin model shape based on FEA method

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Controlling product geometric quality is an important issue, because real parts deviate from their nominal value (e.g., in form, orientation, and position error of features, size of part, etc.). To analyze the influence of these deviations on final product, one solution is to consider the nonnominal Skin Model Shape to simulate assembly, manufacturing, or metrology. The modeling of nonnominal parts is still in its initial phases. First, methods of generating a single feature with deviations are reviewed and classified. With the combination of the single nonideal features to obtain the complete nonideal model of the part, geometrical issues appear, such as gaps and self-intersections. These can be influenced by acute and obtuse angles and the ratio between mesh size and deviation value. From an analysis of these issues, two deviation combination methods are proposed to preserve the manufacturing deviation of features and consistency of the model. These methods are qualified as local and global methods. The local method is based on the iterative calculation of mesh regularization. The global method is based on finite element analysis, with manufacturing deviations added to the nominal model by the penalty function approach. The effectiveness and efficiency of both kinds of method are compared on a trial geometry. The global method is preferred as it needs no iterative calculation, no stop criteria and gives better results. Finally, the proposed method is validated on a more complex mechanical part: a cutter body.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Reference

  1. Chen H, Jin S, Li Z, Lai X (2014) A comprehensive study of three dimensional tolerance analysis methods. Comput Aided Des 53:1–13. doi:10.1016/j.cad.2014.02.014

    Article  Google Scholar 

  2. Ameta G, Serge S, Giordano M (2011) Comparison of spatial math models for tolerance analysis: tolerance-maps, deviation domain, and TTRS. J Comput Inf Sci Eng 11:21004

    Article  Google Scholar 

  3. Requicha AAG (1983) Toward a theory of geometric tolerancing. Int J Robot Res 2:45–60. doi:10.1177/027836498300200403

    Article  Google Scholar 

  4. Wirtz A (1993) Vectorial tolerancing: a basic element for quality control. 3rd CIRP

  5. Geis A, Husung S, Oberänder A et al (2015) Use of vectorial tolerances for direct representation and analysis in CAD-systems. Procedia CIRP 27:230–240. doi:10.1016/j.procir.2015.04.071

    Article  Google Scholar 

  6. Desrochers A, Clément A (1994) A dimensioning and tolerancing assistance model for CAD/CAM systems. Int J Adv Manuf Technol 9:352–361

    Article  Google Scholar 

  7. Clément A, Desrochers A, Riviere A (1991) Theory and Practice of 3-D Tolerancing for Assembly. École de technologie supérieure

  8. Teissandier D, Couetard Y, Gérard A (1999) A computer aided tolerancing model: proportioned assembly clearance volume. Comput Aided Des 31:805–817

    Article  MATH  Google Scholar 

  9. Teissandier D, Couetard Y, Delos V (1999) Operations on polytopes: application to tolerance analysis. Glob. Consistency Toler. Springer, In, pp 425–434

    Google Scholar 

  10. Davidson JK, Mujezinović A, Shah JJ (2002) A new mathematical model for geometric tolerances as applied to round faces. J Mech Des 124:609. doi:10.1115/1.1497362

    Article  Google Scholar 

  11. Schleich B, Anwer N, Zhu Z, et al (2014) Comparative Study on Tolerance Analysis Approaches. Int. Symp. Robust Des. ISoRD14

  12. Mathieu L, Ballu A (2007) A model for a coherent and complete tolerancing process. In: Davidson JK (ed) Models Comput. Aided Toler. Des. Manuf. Springer Netherlands, Dordrecht, pp 35–44

    Google Scholar 

  13. Ballu A, Mathieu L, Dantan J-Y (2015) Formal language for GeoSpelling. J Comput Inf Sci Eng 15:21009. doi:10.1115/1.4029216

    Article  Google Scholar 

  14. Hu YZ, Tonder K (1992) Simulation of 3-D random rough surface by 2-D digital filter and fourier analysis. Int J Mach Tools Manuf 32:83–90. doi:10.1016/0890-6955(92)90064-N

    Article  Google Scholar 

  15. Yastrebov VA, Anciaux G, Molinari J-F (2015) From infinitesimal to full contact between rough surfaces: evolution of the contact area. Int J Solids Struct 52:83–102. doi:10.1016/j.ijsolstr.2014.09.019

    Article  Google Scholar 

  16. Wilma P, Giovanni M (2015) Manufacturing signature for tolerance analysis. J Comput Inf Sci Eng 15:21005

    Article  Google Scholar 

  17. Yanlong C, Bo L, Xuefeng Y et al (2015) Geometrical simulation of multiscale Toleranced surface with consideration of the tolerancing principle. J Comput Inf Sci Eng 15:21006

    Article  Google Scholar 

  18. Franciosa P, Gerbino S, Patalano S (2011) Simulation of variational compliant assemblies with shape errors based on morphing mesh approach. Int J Adv Manuf Technol 53:47–61. doi:10.1007/s00170-010-2839-4

    Article  Google Scholar 

  19. Huang W, Kong Z (2008) Simulation and integration of geometric and rigid body kinematics errors for assembly variation analysis. J Manuf Syst 27:36–44. doi:10.1016/j.jmsy.2008.06.004

    Article  Google Scholar 

  20. Ballu A, Mathieu L (1996) Univocal expression of functional and geometrical tolerances for design, manufacturing and inspection. In: Kimura F (ed) Comput.-aided Toler. Springer Netherlands, Dordrecht, pp 31–46

    Chapter  Google Scholar 

  21. ISO 17450–1:2011 Geometric product specification—general concepts—part 1: model for geometrical specification and verification

  22. Anwer N, Ballu A, Mathieu L (2013) The skin model, a comprehensive geometric model for engineering design. CIRP Ann-Manuf Technol 62:143–146

    Article  Google Scholar 

  23. Schleich B, Anwer N, Mathieu L, Wartzack S (2014) Skin model shapes: a new paradigm shift for geometric variations modelling in mechanical engineering. Comput Aided Des 50:1–15. doi:10.1016/j.cad.2014.01.001

    Article  Google Scholar 

  24. Zhang M, Anwer N, Stockinger A et al (2013) Discrete shape modeling for skin model representation. Proc Inst Mech Eng Part B J Eng Manuf 227:672–680. doi:10.1177/0954405412466987

    Article  Google Scholar 

  25. Henke RP, Summerhays KD, Baldwin JM et al (1999) Methods for evaluation of systematic geometric deviations in machined parts and their relationships to process variables. Precis Eng 23:273–292

    Article  Google Scholar 

  26. Schleich B, Wartzack S, Anwer N, Mathieu L (2015) Skin model shapes: offering new potentials for modelling product shape variability. In: ASME 2015 Int. Des. Eng. Tech. Conf. Comput. Inf. Eng. Conf. American Society of Mechanical Engineers, p V01AT02A015–V01AT02A015

  27. Wang H, Li G, Zhong Z (2008) Optimization of sheet metal forming processes by adaptive response surface based on intelligent sampling method. J Mater Process Technol 197:77–88. doi:10.1016/j.jmatprotec.2007.06.018

    Article  Google Scholar 

  28. Hu M, Lin Z, Lai X, Ni J (2001) Simulation and analysis of assembly processes considering compliant, non-ideal parts and tooling variations. Int J Mach Tools Manuf 41:2233–2243

    Article  Google Scholar 

  29. Blackmore D, Leu M, Wang LP (1997) The sweep-envelope differential equation algorithm and its application to NC machining verification. Comput Aided Des 29:629–637. doi:10.1016/S0010-4485(96)00101-7

    Article  Google Scholar 

  30. Lee S-K, Ko S-L (2002) Development of simulation system for machining process using enhanced Z map model. J Mater Process Technol 130:608–617

    Article  Google Scholar 

  31. Lin Y, Shen Y-L (2004) Enhanced virtual machining for sculptured surfaces by integrating machine tool error models into NC machining simulation. Int J Mach Tools Manuf 44:79–86. doi:10.1016/j.ijmachtools.2003.08.003

    Article  Google Scholar 

  32. Movahhedy M, Gadala MS, Altintas Y (2000) Simulation of the orthogonal metal cutting process using an arbitrary Lagrangian–Eulerian finite-element method. J Mater Process Technol 103:267–275

    Article  Google Scholar 

  33. Soori M, Arezoo B, Habibi M (2014) Virtual machining considering dimensional, geometrical and tool deflection errors in three-axis CNC milling machines. J Manuf Syst 33:498–507. doi:10.1016/j.jmsy.2014.04.007

    Article  Google Scholar 

  34. Spence AD, Abrari F, Elbestawi MA (2000) Integrated solid modeller based solutions for machining. Comput Aided Des 32:553–568. doi:10.1016/S0010-4485(00)00042-7

    Article  Google Scholar 

  35. Altintas Y, Kersting P, Biermann D et al (2014) Virtual process systems for part machining operations. CIRP Ann - Manuf Technol 63:585–605. doi:10.1016/j.cirp.2014.05.007

    Article  Google Scholar 

  36. Zhang M, Anwer N, Mathieu L, Zhao H (2011) A discrete geometry framework for geometrical product specifications. Proc. 21st CIRP Des. Conf. Kaist MK Thompson Ed Pap

  37. Wagersten O, Lindau B, Lindkvist L, Söderberg R (2014) Using morphing techniques in early variation analysis. J Comput Inf Sci Eng 14:11007

    Article  Google Scholar 

  38. Das A, Franciosa P, Williams D, Ceglarek D (2016) Physics-driven shape variation modelling at early design stage. Procedia CIRP 41:1072–1077. doi:10.1016/j.procir.2016.01.031

    Article  Google Scholar 

  39. Formosa F, Samper S (2007) Modal expression of form defects. In: Models Comput. Aided Toler, Des. Manuf. Springer, pp 13–22

    Google Scholar 

  40. Kingslake R, Shannon RR (1992) Basic wavefront aberration theory for optical metrology. Appl. Opt. Opt. Eng. Vol 11

  41. Yan X, Ballu A (2016) Toward an automatic generation of part models with form error. Procedia CIRP 43:23–28. doi:10.1016/j.procir.2016.02.109

    Article  Google Scholar 

  42. Jin S, Lewis RR, West D (2005) A comparison of algorithms for vertex normal computation. Vis Comput 21:71–82. doi:10.1007/s00371-004-0271-1

    Article  Google Scholar 

  43. Chen C-Y, Cheng K-Y (2008) A sharpness-dependent filter for recovering sharp features in repaired 3D mesh models. Vis Comput Graph IEEE Trans On 14:200–212

    Article  Google Scholar 

  44. Ju T (2009) Fixing geometric errors on polygonal models: a survey. J Comput Sci Technol 24:19–29

    Article  Google Scholar 

  45. Yang L, Yan Q, Xiao C (2016) Shape-controllable geometry completion for point cloud models. Vis Comput. doi:10.1007/s00371-016-1208-1

    Google Scholar 

  46. Ballu A, Yan X, Blanchard A et al (2016) Virtual metrology laboratory for e-learning. Procedia CIRP 43:148–153. doi:10.1016/j.procir.2016.02.110

    Article  Google Scholar 

  47. Ohtake Y, Belyaev A, Bogaevski I (2001) Mesh regularization and adaptive smoothing. Comput Aided Des 33:789–800. doi:10.1016/S0010-4485(01)00095-1

    Article  Google Scholar 

  48. Riehl S, Steinmann P (2015) A staggered approach to shape and topology optimization using the traction method and an evolutionary-type advancing front algorithm. Comput Methods Appl Mech Eng 287:1–30. doi:10.1016/j.cma.2015.01.007

    Article  MathSciNet  Google Scholar 

  49. Yamauchi H, Lee S, Lee Y, et al (2005) Feature sensitive mesh segmentation with mean shift. In: Shape Model. Appl. 2005 Int. Conf. IEEE, pp 236–243

  50. Kobbelt L, Campagna S, Vorsatz J, Seidel H-P (1998) Interactive multi-resolution modeling on arbitrary meshes. In: Proc. 25th Annu. Conf. Comput. Graph. Interact. Tech. ACM, pp 105–114

  51. Ait-Ali-Yahia D, Baruzzi G, Habashi WG et al (2002) Anisotropic mesh adaptation: towards user-independent, mesh-independent and solver-independent CFD. Part II. Structured grids. Int J Numer Methods Fluids 39:657–673

    Article  MATH  Google Scholar 

  52. Blom FJ (2000) Considerations on the spring analogy. Int J Numer Methods Fluids 32:647–668. doi:10.1002/(SICI)1097-0363(20000330)32:6<647::AID-FLD979>3.0.CO;2-K

    Article  MATH  Google Scholar 

  53. Zeng D, Ethier CR (2005) A semi-torsional spring analogy model for updating unstructured meshes in 3D moving domains. Finite Elem Anal Des 41:1118–1139. doi:10.1016/j.finel.2005.01.003

    Article  Google Scholar 

  54. Amirante D, Hills NJ, Barnes CJ (2012) A moving mesh algorithm for aero-thermo-mechanical modelling in turbomachinery. Int J Numer Methods Fluids 70:1118–1138

    Article  MathSciNet  Google Scholar 

  55. Hsu S-Y, Chang C-L (2007) Mesh deformation based on fully stressed design: the method and 2-D examples. Int J Numer Methods Eng 72:606–629

    Article  MATH  Google Scholar 

  56. Zienkiewicz OC, Taylor RL, Zienkiewicz OC, Taylor RL (1977) The finite element method. McGraw-hill London

  57. Zeng P (2007) Fundamentals of finite element analysis. Tsinghua University Press, Beijing

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex Ballu.

Ethics declarations

Funding

This work was supported by the China Scholarship Council.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, X., Ballu, A. Generation of consistent skin model shape based on FEA method. Int J Adv Manuf Technol 92, 789–802 (2017). https://doi.org/10.1007/s00170-017-0177-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-017-0177-5

Keywords

Navigation