Skip to main content
Log in

Meta-QTLs, ortho-meta-QTLs and candidate genes for grain yield and associated traits in wheat (Triticum aestivum L.)

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

In wheat, 2852 major QTLs of 8998 QTLs available for yield and related traits were used for meta-analysis; 141 meta-QTLs were identified, which included 13 breeder’s MQTLs and 24 ortho-MQTLs; 1202 candidate genes and 50 homologues of genes for yield from other cereals were also identified.

Abstract

Meta-QTL analysis was conducted using 2852 of the 8998 known QTLs, retrieved from 230 reports published during 1999–2020 (including 19 studies on tetraploid wheat) for grain yield (GY) and the following ten component traits: (i) grain weight (GWei), (ii) grain morphology-related traits (GMRTs), (iii) grain number (GN), (iv) spikes-related traits (SRTs), (v) plant height (PH), (vi) tiller number (TN), (vii) harvest index (HI), (viii) biomass yield (BY), (ix) days to heading/flowering and maturity (DTH/F/M), and (x) grain filling duration (GFD). The study resulted in the identification of 141 meta-QTLs (MQTLs), with an average confidence interval (CI) of 1.4 cM as against a CI of > 12.1 cM (8.8 fold reduction) in the QTLs that were used. The corresponding physical length of CI ranged from 0.01 Mb to 661.9 Mb (mean, 31.5 Mb). Seventy-seven (77) of these 141 MQTLs overlapped marker-trait associations (MTAs) reported in genome-wide association studies. Also, 63 MQTLs (each based on at least 10 QTLs) were considered stable and robust, with 13 MQTLs described as breeder’s MQTLs (selected based on small CI, large LOD, and high level of phenotypic variation explained). Thirty-five yield-related genes from rice, barley, and maize were also utilized to identify 50 wheat homologues in MQTLs. Further, the use of synteny and collinearity allowed the identification of 24 ortho-MQTLs which were common among the wheat, barley, rice, and maize. The results of the present study should prove useful for wheat breeding and future basic research in cereals including wheat, barley, rice, and maize.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of data and material

Data generated or analysed during this study are included in this published article (and its Supplementary material 1). Datasets are also available from the corresponding author on reasonable request.

References

  • Acuña Galindo MA, Mason RE, Subramanian NK, Hays DB (2015) Meta analysis of wheat QTL regions associated with adaptation to drought and heat stress. Crop Sci 55:477–492

    Google Scholar 

  • Aduragbemi A, Soriano JM (2021) Unravelling consensus genomic regions conferring leaf rust resistance in wheat via meta-QTL analysis. bioRxiv. https://orcid.org/0000-0003-1965-6504

  • Arcade A, Labourdette A, Falque M, Mangin B, Chardon F, Charcosset A, Joets J (2004) BioMercator:integrating genetic maps and QTL towards discovery of candidate genes. Bioinformatics 20:2324–2326

    CAS  PubMed  Google Scholar 

  • Avni R, Oren L, Shabtay G, Assili S, Pozniak C, Hale I, Ben-David R, Peleg Z, Distelfeld A (2018) Genome based meta-QTL analysis of grain weight in tetraploid wheat identifies rare alleles of GRF4 associated with larger grains. Genes 9:636

    PubMed Central  Google Scholar 

  • Bharadwaj C, Tripathi S, Soren KR, Thudi M, Singh RK, Sheoran S, Roorkiwal M, Patil BS, Chitikineni A, Palakurthi R, Vemula A (2021) Introgression of “QTL-hotspot” region enhances drought tolerance and grain yield in three elite chickpea cultivars. Plant Genome 14:e20076

    CAS  PubMed  Google Scholar 

  • Bilgrami SS, Ramandi HD, Shariati V, Razavi K, Tavakol E, Fakheri BA, Nezhad NM, Ghaderian M (2020) Detection of genomic regions associated with tiller number in Iranian bread wheat under different water regimes using genome-wide association study. Sci Rep 10:1–17

    Google Scholar 

  • Bommert P, Nagasawa NS, Jackson D (2013) Quantitative variation in maize kernel row number is controlled by the FASCIATED EAR2 locus. Nat Genet 45:334–337

    CAS  PubMed  Google Scholar 

  • Borrill P, Harrington SA, Simmonds J, Uauy C (2019) Identification of transcription factors regulating senescence in wheat through gene regulatory network modeling. Plant Physiol 180:1740–1755

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bortiri E, Chuck G, Vollbrecht E, Rocheford T, Martienssen R, Hake S (2006) ramosa2 encodes a LATERAL ORGAN BOUNDARY domain protein that determines the fate of stem cells in branch meristems of maize. Plant Cell 18:574–585

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cai Y, Li S, Jiao G, Sheng Z, Wu Y, Shao G, Xie L, Peng C, Xu J, Tang S, Wei X (2018) OsPK2 encodes a plastidic pyruvate kinase involved in rice endosperm starch synthesis compound granule formation and grain filling. Plant Biotechnol J 16:1878–1891

    CAS  PubMed  PubMed Central  Google Scholar 

  • Calderini DF, Castillo FM, Arenas MA, Molero G, Reynolds MP, Craze M, Bowden S, Milner MJ, Wallington EJ, Dowle A, Gomez LD (2020) Overcoming the trade-off between grain weight and number in wheat by the ectopic expression of expansin in developing seeds leads to increased yield potential. New Phytol 230:629–640

    PubMed  PubMed Central  Google Scholar 

  • Cao J, Liu K, Song W, Zhang J, Yao Y, Xin M, Hu Z, Peng H, Ni Z, Sun Q, Du J (2021) Pleiotropic function of the SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE gene TaSPL14 in wheat plant architecture. Planta 253:1–12

    Google Scholar 

  • Cavanagh CR, Chao S, Wang S, Huang BE, Stephen S, Kiani S, Forrest K, Saintenac C, Brown-Guedira GL, Akhunova A, See D (2013) Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars. Proc Natl Acad Sci 110:8057–8062

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen L, An Y, Li YX, Li C, Shi Y, Song Y, Zhang D, Wang T, Li Y (2017) Candidate loci for yield-related traits in maize revealed by a combination of meta QTL analysis and regional association mapping. Front Plant Sci 8:2190

    PubMed  PubMed Central  Google Scholar 

  • Chen Z, Cheng X, Chai L, Wang Z, Bian R, Li J, Zhao A, Xin M, Guo W, Hu Z, Peng H (2020a) Dissection of genetic factors underlying grain size and fine mapping of QTgw.cau-7D in common wheat (Triticum aestivum L.). Theor Appl Genet 133:49–162

    Google Scholar 

  • Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, He Y, Xia R (2020b) TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant 13:1194–1202

    CAS  PubMed  Google Scholar 

  • Choulet F, Alberti A, Theil S, Glover N, Barbe V, Daron J, Pingault L, Sourdille P, Couloux A, Paux E, Leroy P (2014) Structural and functional partitioning of bread wheat chromosome 3B. Science 345:6194

    Google Scholar 

  • Chuck G, Muszynski M, Kellogg E, Hake S, Schmidt RJ (2002) The control of spikelet meristem identity by the branched silkless1 gene in maize. Science 298:1238–1241

    CAS  PubMed  Google Scholar 

  • Clavijo BJ, Venturini L, Schudoma C, Accinelli GG, Kaithakottil G, Wright J, Borrill P, Kettleborough G, Heavens D, Chapman H, Lipscombe J (2017) An improved assembly and annotation of the allohexaploid wheat genome identifies complete families of agronomic genes and provides genomic evidence for chromosomal translocations. Genome Res 27:885–896

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cobb JN, Biswas PS, Platten JD (2019) Back to the future: revisiting MAS as a tool for modern plant breeding. Theor Appl Genet 132:647–667

    CAS  PubMed  Google Scholar 

  • Collard BC, Mackill DJ (2008) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos Trans R Soc Lond B Biol Sci 363:57–572

    Google Scholar 

  • Cui F, Zhang N, Fan XL, Zhang W, Zhao CH, Yang LJ, Pan RQ, Chen M, Han J, Zhao XQ, Ji J (2017) Utilization of a Wheat660K SNP array-derived high-density genetic map for high-resolution mapping of a major QTL for kernel number. Sci Rep 7:1–12

    Google Scholar 

  • Daba SD, Liu X, Aryal U, Mohammadi M (2020) A proteomic analysis of grain yield-related traits in wheat. AoB Plants 12:plaa042

    CAS  PubMed  PubMed Central  Google Scholar 

  • Darvasi A, Soller M (1997) A simple method to calculate resolving power and confidence interval of QTL map location. Behav Genet 27:125–132

    CAS  PubMed  Google Scholar 

  • de Oliveira Y, Sosnowski O, Charcosset A, Joets J (2014) BioMercator 4: a complete framework to integrate QTL, meta-QTL, and genome annotation. European Conference on Computational Biology 2014, Sep 2014, Strasbourg, France

  • Dobrovolskaya O, Pont C, Sibout R, Martinek P, Badaeva E, Murat F, Chosson A, Watanabe N, Prat E, Gautier N, Gautier V (2015) FRIZZY PANICLE drives supernumerary spikelets in bread wheat. Plant Physiol 167:189–199

    CAS  PubMed  Google Scholar 

  • Duan P, Rao Y, Zeng D, Yang Y, Xu R, Zhang B, Dong G, Qian Q, Li Y (2014) Small grain1 which encodes a mitogen-activated protein kinase kinase 4 influences grain size in rice. Plant J 77:547–557

    CAS  PubMed  Google Scholar 

  • El Mannai Y, Akabane K, Hiratsu K, Satoh-Nagasawa N, Wabiko H (2017) The NAC transcription factor gene OsY37 (ONAC011) promotes leaf senescence and accelerates heading time in rice. Int J Mol Sci 18:2165

    PubMed Central  Google Scholar 

  • Endelman JB, Plomion C (2014) LPmerge:an R package for merging genetic maps by linear programming. Bioinformatics 30:1623–1624

    CAS  PubMed  Google Scholar 

  • Galli M, Liu Q, Moss BL, Malcomber S, Li W, Gaines C, Federici S, Roshkovan J, Meeley R, Nemhauser JL, Gallavotti A (2015) Auxin signaling modules regulate maize inflorescence architecture. Proc Natl Acad Sci 112:13372–13377

    CAS  PubMed  PubMed Central  Google Scholar 

  • Galuszka P, Frébortová J, Werner T, Yamada M, Strnad M, Schmülling T, Frébort I (2004) Cytokinin oxidase/dehydrogenase genes in barley and wheat: cloning and heterologous expression. Eur J Biochem 271:3990–4002

    CAS  PubMed  Google Scholar 

  • Gautam T, Saripalli G, Gahlaut V, Kumar A, Sharma PK, Balyan HS, Gupta PK (2019) Further studies on sugar transporter (SWEET) genes in wheat (Triticum aestivum L.). Mol Biol Rep 46:2327–2353

    CAS  PubMed  Google Scholar 

  • Gegas VC, Nazari A, Griffiths S, Simmonds J, Fish L, Orford S, Sayers L, Doonan JH, Snape JW (2010) A genetic framework for grain size and shape variation in wheat. Plant Cell 22:1046–1056

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gillies SA, Futardo A, Henry RJ (2012) Gene expression in the developing aleurone and starchy endosperm of wheat. Plant Biotechnol J 10:668–679

    CAS  PubMed  Google Scholar 

  • Glover NM, Redestig H, Dessimoz C (2016) Homoeologs: what are they and how do we infer them? Trends Plant Sci 21:609–621

    CAS  PubMed  PubMed Central  Google Scholar 

  • Glover NM, Sheppard S, Dessimoz C (2021) Homoeolog inference methods requiring bidirectional best hits or synteny miss many pairs Genome. Biol Evol. https://doi.org/10.1093/gbe/evab077

    Article  Google Scholar 

  • Goffinet B, Gerber S (2000) Quantitative trait loci: a meta-analysis. Genetics 155:463–473

    CAS  PubMed  PubMed Central  Google Scholar 

  • Griffiths S, Simmonds J, Leverington M, Wang Y, Fish L, Sayers L, Alibert L, Orford S, Wingen L, Snape J (2012) Meta-QTL analysis of the genetic control of crop height in elite European winter wheat germplasm. Mol Breed 29:159–171

    Google Scholar 

  • Griffiths S, Simmonds J, Leverington M, Wang Y, Fish L, Sayers L, Alibert L, Orford S, Wingen L, Herry L, Faure S (2009) Meta-QTL analysis of the genetic control of ear emergence in elite European winter wheat germplasm. Theor Appl Genet 119:383–395

    CAS  PubMed  Google Scholar 

  • Gunupuru LR, Arunachalam C, Malla KB, Kahla A, Perochon A, Jia J, Thapa G, Doohan FM (2018) A wheat cytochrome P450 enhances both resistance to deoxynivalenol and grain yield. PLoS ONE 13:e0204992

    PubMed  PubMed Central  Google Scholar 

  • Guo B, Sleper DA, Lu P, Shannon JG, Nguyen HT, Arelli PR (2006) QTLs associated with resistance to soybean cyst nematode in soybean: Meta-analysis of QTL locations. Crop Sci 46:595–602

    Google Scholar 

  • Guo T, Chen K, Dong NQ, Shi CL, Ye WW, Gao JP, Shan JX, Lin HX (2018) GRAIN SIZE AND NUMBER1 negatively regulates the OsMKKK10-OsMKK4-OsMPK6 cascade to coordinate the trade-off between grain number per panicle and grain size in rice. Plant Cell 30:871–888

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta PK, Balyan HS, Sharma S, Kumar R (2020) Genetics of yield, abiotic stress tolerance and biofortification in wheat (Triticum aestivum L.). Theor Appl Genet 133:1569–1602

    PubMed  Google Scholar 

  • Hanocq E, Laperche A, Jaminon O, Lainé AL, Le Gouis J (2007) Most significant genome regions involved in the control of earliness traits in bread wheat, as revealed by QTL meta-analysis. Theor Appl Genet 114:569–584

    CAS  PubMed  Google Scholar 

  • Heang D, Sassa H (2012) An atypical bHLH protein encoded by POSITIVE REGULATOR OF GRAIN LENGTH 2 is involved in controlling grain length and weight of rice through interaction with a typical bHLH protein APG. Breed Sci 62:133–141

    CAS  PubMed  PubMed Central  Google Scholar 

  • Heng Y, Wu C, Long Y, Luo S, Ma J, Chen J, Liu J, Zhang H, Ren Y, Wang M, Tan J (2018) OsALMT7 maintains panicle size and grain yield in rice by mediating malate transport. Plant Cell 30:889–906

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hirsch CN, Foerster JM, Johnson JM, Sekhon RS, Muttoni G, Vaillancourt B, Peñagaricano F, Lindquist E, Pedraza MA, Barry K, de Leon N (2014) Insights into the maize pan-genome and pan-transcriptome. Plant Cell 26:121–135

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hong Z, Ueguchitanaka M, Umemura K, Uozu S, Fujioka S, Takatsuto S, Yoshida S, Ashikari M, Kitano H, Matsuoka M (2003) A rice brassinosteroid-deficient mutant ebisu dwarf (d2) is caused by a loss of function of a new member of cytochrome P450. Plant Cell 15:2900–2910

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hu J, Wang X, Zhang G, Jiang P, Chen W, Hao Y, Ma X, Xu S, Jia J, Kong L, Wang H (2020) QTL mapping for yield-related traits in wheat based on four RIL populations. Theor Appl Genet 133:917–933

    CAS  PubMed  Google Scholar 

  • Jia H, Li M, Li W, Liu L, Jian Y, Yang Z, Shen X, Ning Q, Du Y, Zhao R, Jackson D (2020) A serine/threonine protein kinase encoding gene KERNEL NUMBER PER ROW6 regulates maize grain yield. Nat Commun 11:1–11

    Google Scholar 

  • Jin T, Chen J, Zhu L, Zhao Y, Guo J, Huang Y (2015) Comparative mapping combined with homology-based cloning of the rice genome reveals candidate genes for grain zinc and iron concentration in maize. BMC Genet 16:1–15

    Google Scholar 

  • Kale SM, Jaganathan D, Ruperao P, Chen C, Punna R, Kudapa H, Thudi M, Roorkiwal M, Katta MA, Doddamani D, Garg V (2015) Prioritization of candidate genes in “QTL-hotspot” region for drought tolerance in chickpea (Cicer arietinum L.). Sci Rep 5:1–14

    Google Scholar 

  • Kamran A, Iqbal M, Spaner D (2014) Flowering time in wheat (Triticum aestivum L.): a key factor for global adaptability. Euphytica 197:1–26

    CAS  Google Scholar 

  • Khahani B, Tavakol E, Shariati V (2019) Genome-wide meta-analysis on yield and yield-related QTLs in barley (Hordeum vulgare L.). Mol Breed 39:1–16

    CAS  Google Scholar 

  • Khahani B, Tavakol E, Shariati V, Fornara F (2020) Genome wide screening and comparative genome analysis for Meta-QTLs ortho-MQTLs and candidate genes controlling yield and yield-related traits in rice. BMC Genom 21:1–24

    Google Scholar 

  • Koppolu R, Anwar N, Sakuma S, Tagiri A, Lundqvist U, Pourkheirandish M, Rutten T, Seiler C, Himmelbach A, Ariyadasa R, Youssef HM (2013) Six-rowed spike4 (Vrs4) controls spikelet determinacy and row-type in barley. Proc Natl Acad Sci 110:13198–13203

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar A, Saripalli G, Jan I, Kumar K, Sharma PK, Balyan HS, Gupta PK (2020) Meta-QTL analysis and identification of candidate genes for drought tolerance in bread wheat (Triticum aestivum L.). Physiol Mol Biol Plants 26:1713–1725

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Mohan A, Balyan HS, Gupta PK (2009) Orthology between genomes of Brachypodium, wheat and rice. BMC Res Notes 2:1–9

    CAS  Google Scholar 

  • Kumar S, Singh VP, Saini DK, Sharma H, Gautam S, Kumar S, Balyan HS, Gupta PK (2021) Meta-QTLs, ortho-MQTLs and candidate genes for thermotolerance in wheat (Triticum aestivum L.). Mol Breed 41:69. https://doi.org/10.1007/s11032-021-01264-7

    Article  CAS  Google Scholar 

  • Li A, Liu D, Wu J, Zhao X, Hao M, Geng S, Yan J, Jiang X, Zhang L, Wu J, Yin L (2014) mRNA and small RNA transcriptomes reveal insights into dynamic homoeolog regulation of allopolyploid heterosis in nascent hexaploid wheat. Plant Cell 26:1878–1900

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li Q, Yang X, Bai G, Warburton ML, Mahuku G, Gore M, Dai J, Li J, Yan J (2010) Cloning and characterization of a putative GS3 ortholog involved in maize kernel development. Theor Appl Genet 120:753–763

    CAS  PubMed  Google Scholar 

  • Li Y, Wei K (2020) Comparative functional genomics analysis of cytochrome P450 gene superfamily in wheat and maize. BMC Plant Biol 20:1–22

    CAS  Google Scholar 

  • Liu E, Liu Y, Wu G, Zeng S, Tran Thi TG, Liang L, Liang Y, Dong Z, She D, Wang H, Zaid IU (2016) Identification of a candidate gene for panicle length in rice (Oryza sativa L.) via association and linkage analysis. Front Plant Sci 7:596

    PubMed  PubMed Central  Google Scholar 

  • Liu H, Mullan D, Zhang C, Zhao S, Li X, Zhang A, Lu Z, Wang Y, Yan G (2020) Major genomic regions responsible for wheat yield and its components as revealed by meta-QTL and genotype–phenotype association analyses. Planta 252:1–22

    Google Scholar 

  • Luo J, Liu H, Zhou T, Gu B, Huang X, Shangguan Y, Zhu J, Li Y, Zhao Y, Wang Y, Zhao Q (2013) An-1 encodes a basic helix-loop-helix protein that regulates awn development grain size and grain number in rice. Plant Cell 25:3360

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ma D, Yan J, He Z, Wu L, Xia X (2012) Characterization of a cell wall invertase gene TaCwi-A1 on common wheat chromosome 2A and development of functional markers. Mol Breed 29:43–52

    CAS  Google Scholar 

  • Ma L, Zhang D, Miao Q, Yang J, Xuan Y, Hu Y (2017) Essential role of sugar transporter during the early stage of rice grain filling. Plant Cell Physiol 58:863–873

    CAS  PubMed  Google Scholar 

  • Maccaferri M, Harris NS, Twardziok SO, Pasam RK, Gundlach H, Spannagl M, Ormanbekova D, Lux T, Prade VM, Milner SG, Himmelbach A (2019) Durum wheat genome highlights past domestication signatures and future improvement targets. Nat Genet 51:885–895

    CAS  PubMed  Google Scholar 

  • Mao H, Sun S, Yao J, Wang C, Yu S, Xu C, Li X, Zhang Q (2010) Linking differential domain functions of the GS3 protein to natural variation of grain size in rice. Proc Natl Acad Sci 107:19579–19584

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marone D, Russo MA, Laidò G, De Vita P, Papa R, Blanco A, Gadaleta A, Rubiales D, Mastrangelo AM (2013) Genetic basis of qualitative and quantitative resistance to powdery mildew in wheat:from consensus regions to candidate genes. BMC Genom 14:562

    CAS  Google Scholar 

  • Mayer KF, Martis M, Hedley PE, Šimková H, Liu H, Morris JA, Steuernagel B, Taudien S, Roessner S, Gundlach H, Kubaláková M (2011) Unlocking the barley genome by chromosomal and comparative genomics. Plant Cell 23:1249–1263

    CAS  PubMed  PubMed Central  Google Scholar 

  • Medema MH, Kottmann R, Yilmaz P, Cummings M, Biggins JB, Blin K, De Bruijn I, Chooi YH, Claesen J, Coates RC, Cruz-Morales P (2015) Minimum information about a biosynthetic gene cluster. Nat Chem Biol 11:625–631

    CAS  PubMed  PubMed Central  Google Scholar 

  • Misztal I (2006) Challenges of application of marker assisted selection—a review. Anim Sci Pap Rep 24:5–10

    Google Scholar 

  • Miura K, Ikeda M, Matsubara A, Song XJ, Ito M, Asano K, Matsuoka M, Kitano H, Ashikari M (2010) OsSPL14 promotes panicle branching and higher grain productivity in rice. Nat Genet 42:545–549

    CAS  PubMed  Google Scholar 

  • Nadolska-Orczyk A, Rajchel IK, Orczyk W, Gasparis S (2017) Major genes determining yield-related traits in wheat and barley. Theor Appl Genet 130:1081–1098

    CAS  PubMed  PubMed Central  Google Scholar 

  • Niño-González M, Novo-Uzal E, Richardson DN, Barros PM, Duque P (2019) More transporters more substrates: The Arabidopsis major facilitator superfamily revisited. Mol Plant 12:1182–1202

    PubMed  Google Scholar 

  • Ogonowska H, Barchacka K, Gasparis S, Jablonski B, Orczyk W, Dmochowska-Boguta M, Nadolska-Orczyk A (2019) Specificity of expression of TaCKX family genes in developing plants of wheat and their co-operation within and among organs. PLoS ONE 14:e0214239

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pearce S, Huttly AK, Prosser IM, Li YD, Vaughan SP, Gallova B, Patil A, Coghill JA, Dubcovsky J, Hedden P, Phillips AL (2015) Heterologous expression and transcript analysis of gibberellin biosynthetic genes of grasses reveals novel functionality in the GA3ox family. BMC Plant Biol 15:1–19

    Google Scholar 

  • Pfeifer M, Kugler KG, Sandve SR, Zhan B, Rudi H, Hvidsten TR, Mayer KF, Olsen OA, International Wheat Genome Sequencing Consortium (2014) Genome interplay in the grain transcriptome of hexaploid bread wheat. Science 345:6194

    Google Scholar 

  • Phillips KA, Skirpan AL, Liu X, Christensen A, Slewinski TL, Hudson C, Barazesh S, Cohen JD, Malcomber S, McSteen P (2011) vanishing tassel2 encodes a grass-specific tryptophan aminotransferase required for vegetative and reproductive development in maize. Plant Cell 23:550–566

    CAS  PubMed  PubMed Central  Google Scholar 

  • Poursarebani N, Trautewig C, Melzer M, Nussbaumer T, Lundqvist U, Rutten T, Schmutzer T, Brandt R, Himmelbach A, Altschmied L, Koppolu R (2020) COMPOSITUM 1 contributes to the architectural simplification of barley inflorescence via meristem identity signals. Nat Commun 11:1–16

    Google Scholar 

  • Qi P, Lin YS, Song XJ, Shen JB, Huang W, Shan JX, Zhu MZ, Jiang L, Gao JP, Lin HX (2012) The novel quantitative trait locus GL31 controls rice grain size and yield by regulating Cyclin-T1;3. Cell Res 22:1666–1680

    CAS  PubMed  PubMed Central  Google Scholar 

  • Quraishi UM, Abrouk M, Murat F, Pont C, Foucrier S, Desmaizieres G, Confolent C, Riviere N, Charmet G, Paux E, Murigneux A (2011) Cross genome map based dissection of a nitrogen use efficiency ortho metaQTL in bread wheat unravels concerted cereal genome evolution. The Plant J 65:745–756

    CAS  PubMed  Google Scholar 

  • Quraishi UM, Pont C, Ain QU, Flores R, Burlot L, Alaux M, Quesneville H, Salse J (2017) Combined genomic and genetic data integration of major agronomical traits in bread wheat (Triticum aestivum L.). Front Plant Sci 8:1843

    PubMed  PubMed Central  Google Scholar 

  • Ramamoorthy R, Vishal B, Ramachandran S, Kumar PP (2018) The OsPS1-F gene regulates growth and development in rice by modulating photosynthetic electron transport rate. Plant Cell Rep 37:377–385

    CAS  PubMed  Google Scholar 

  • Ramírez-González RH, Borrill P, Lang D, Harrington SA, Brinton J, Venturini L, Davey M, Jacobs J, Van Ex F, Pasha A, Khedikar Y (2018) The transcriptional landscape of polyploid wheat. Science 361:6403

    Google Scholar 

  • Raza Q, Riaz A, Bashir K, Sabar M (2020) Reproductive tissues-specific meta-QTLs and candidate genes for development of heat-tolerant rice cultivars. Plant Mol Biol 104:97–112

    CAS  PubMed  Google Scholar 

  • Ren D, Hu J, Xu Q, Cui Y, Zhang Y, Zhou T, Rao Y, Xue D, Zeng D, Zhang G, Gao Z (2018) FZP determines grain size and sterile lemma fate in rice. J Exp Bot 69:4853–4866

    PubMed  PubMed Central  Google Scholar 

  • Saini DK, Chahal A, Pal N, Srivastava P, Gupta PK (2021a) Meta-analysis reveals consensus genomic regions associated with multiple disease resistance in wheat (Triticum aestivum L.), 29 September 2021, PREPRINT (Version 1) available at Research Square [https://doi.org/10.21203/rs.3.rs-773587/v1]

  • Saini DK, Chopra Y, Pal N, Chahal A, Srivastava P, Gupta PK (2021b) Meta-QTLs, ortho-MQTLs and candidate genes for nitrogen use efficiency and root system architecture in bread wheat (Triticum aestivum L.). Physiol Mol Biol Plants 1–23

  • Sakuma S, Golan G, Guo Z, Ogawa T, Tagiri A, Sugimoto K, Bernhardt N, Brassac J, Mascher M, Hensel G, Ohnishi S (2018) Unleashing floret fertility by a mutated homeobox gene improved grain yield during wheat evolution under domestication. Biorxiv p434985

  • Salvi S, Tuberosa R (2015) The crop QTLome comes of age. Curr Opin Biotechnol 32:179–185

    CAS  PubMed  Google Scholar 

  • Selamat N, Nadarajah KK (2021) Meta-analysis of quantitative traits loci (QTL) identified in drought response in rice (Oryza sativa L.). Plants 10:716

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shao A, Ma W, Zhao X, Hu M, He X, Teng W, Li H, Tong Y (2017) The auxin biosynthetic TRYPTOPHAN AMINOTRANSFERASE RELATED TaTAR2.1-3A increases grain yield of wheat. Plant Physiol 174:2274–2288

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shiferaw B, Smale M, Braun HJ, Duveiller E, Reynolds M, Muricho G (2013) Crops that feed the world 10 Past successes and future challenges to the role played by wheat in global food security. Food Secur 5:291–317

    Google Scholar 

  • Singh K, Batra R, Sharma S, Saripalli G, Gautam T, Singh R, Pal S, Malik P, Kumar M, Jan I, Singh S, Kumar D, Pundir S, Chaturvedi D, Verma A, Rani A, Kumar A, Sharma H, Chaudhary J, Kumar K, Kumar S, Singh VK, Singh VP, Kumar S, Kumar R, Gaurav SS, Sharma S, Sharma PK, Balyan HS, Gupta PK (2021) WheatQTLdb: a QTL database for wheat. Mol Genet Genomics. https://doi.org/10.1007/s00438-021-01796-9

    Article  PubMed  Google Scholar 

  • Somers DJ, Isaac P, Edwards K (2004) A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114

    CAS  PubMed  Google Scholar 

  • Song XJ, Huang W, Shi M, Zhu MZ, Lin HX (2007) A QTL for rice grain width and weight encodes a previously unknown ring-type E3 ubiquitin ligase. Nat Genet 39:623

    CAS  PubMed  Google Scholar 

  • Soriano JM, Colasuonno P, Marcotuli I, Gadaleta A (2021) Meta-QTL analysis and identification of candidate genes for quality, abiotic and biotic stress in durum wheat. Sci Rep 11:1–15

    Google Scholar 

  • Sosnowski O, Charcosset A, Joets J (2012) BioMercator V3:an upgrade of genetic map compilation and quantitative trait loci meta-analysis algorithms. Bioinformatics 28:2082–2083

    CAS  PubMed  PubMed Central  Google Scholar 

  • Su Z, Hao C, Wang L, Dong Y, Zhang X (2011) Identification and development of a functional marker of TaGW2 associated with grain weight in bread wheat (Triticum aestivum L.). Theor Appl Genet 122:211–223

    CAS  PubMed  Google Scholar 

  • Sun H, Qian Q, Wu K, Luo J, Wang S, Zhang C, Ma Y, Liu Q, Huang X, Yuan Q, Han R (2014) Heterotrimeric G proteins regulate nitrogen-use efficiency in rice. Nat Genet 46:652

    CAS  PubMed  Google Scholar 

  • Tanabe S, Ashikari M, Fujioka S, Takatsuto S, Yoshida S, Yano M, Yoshimura A, Kitano H, Matsuoka M, Fujisawa Y, Kato H (2005) A novel cytochrome P450 is implicated in brassinosteroid biosynthesis via the characterization of a rice dwarf mutant dwarf11 with reduced seed length. Plant Cell 17:776

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tyagi S, Gupta PK (2012) Meta-analysis of QTLs involved in pre-harvest sprouting tolerance and dormancy in bread wheat. Triticeae Genomics Genet 3:9–24

    Google Scholar 

  • Vavilova V, Konopatskaia I, Kuznetsova AE, Blinov A, Goncharov NP (2017) DEP1 gene in wheat species with normal compactoid and compact spikes. BMC Genet 18:106

    PubMed  PubMed Central  Google Scholar 

  • Venske E, Dos Santos RS, Farias DDR, Rother V, da Maia LC, Pegoraro C, Costa de Oliveira A (2019) Meta-analysis of the QTLome of Fusarium head blight resistance in bread wheat:refining the current puzzle. Front Plant Sci 10:727

    PubMed  PubMed Central  Google Scholar 

  • Veyrieras JB, Goffinet B, Charcosset A (2007) MetaQTL:a package of new computational methods for the meta-analysis of QTL mapping experiments. BMC Bioinform 8:49

    Google Scholar 

  • Wagner GP, Kin K, Lynch VJ (2013) A model based criterion for gene expression calls using RNA-seq data. Theory Biosci 132:159–164

    CAS  PubMed  Google Scholar 

  • Wang E, Wang J, Zhu X, Hao W, Wang L, Li Q, Zhang L, He W, Lu B, Lin H, Ma H (2008) Control of rice grain-filling and yield by a gene with a potential signature of domestication. Nat Genet 40:1370

    CAS  PubMed  Google Scholar 

  • Wang S, Wong D, Forrest K, Allen A, Chao S, Huang BE, Maccaferri M, Salvi S, Milner SG, Cattivelli L, Mastrangelo AM (2014) Characterization of polyploid wheat genomic diversity using a high density 90,000 single nucleotide polymorphism array. Plant Biotechnol J 12:787–796

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang S, Wu K, Qian Q, Liu Q, Li Q, Pan Y, Ye Y, Liu X, Wang J, Zhang J, Li S (2017) Non-canonical regulation of SPL transcription factors by a human OTUB1-like deubiquitinase defines a new plant type rice associated with higher grain yield. Cell Res 27:1142–1156

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Huang Z, Deng D, Ding H, Zhang R, Wang S, Bian Y, Yin Z, Xu X (2013) Meta-analysis combined with syntenic metaQTL mining dissects candidate loci for maize yield. Mol Breed 31:601–614

    Google Scholar 

  • Wang Y, Xu J, Deng D, Ding H, Bian Y, Yin Z, Wu Y, Zhou B, Zhao Y (2016) A comprehensive meta-analysis of plant morphology yield stay-green and virus disease resistance QTL in maize (Zea mays L.). Planta 243:459–471

    CAS  PubMed  Google Scholar 

  • Winfield MO, Allen AM, Burridge AJ, Barker GL, Benbow HR, Wilkinson PA, Coghill J, Waterfall C, Davassi A, Scopes G, Pirani A (2016) High density SNP genotyping array for hexaploid wheat and its secondary and tertiary gene pool. Plant Biotechnol J 14:1195–1206

    CAS  PubMed  Google Scholar 

  • Yadav OP, Singh DV, Dhillon BS, Mohapatra T (2019) India’s evergreen revolution in cereals. Curr Sci 116:1805–1808

    Google Scholar 

  • Yan D, Zhou Y, Ye S, Zeng L, Zhang X, He Z (2013) BEAK-SHAPED GRAIN 1/TRIANGULAR HULL 1 a DUF640 gene is associated with grain shape size and weight in rice. Sci China Life Sci 56:275–283

    CAS  PubMed  Google Scholar 

  • Yi G, Sze S-H, Thon MR (2007) Identifying clusters of functionally related genes in genomes. Bioinformatics 23:1053–1060

    CAS  PubMed  Google Scholar 

  • Yu J, Xiong H, Zhu X, Zhang H, Li H, Miao J, Wang W, Tang Z, Zhang Z, Yao G, Zhang Q (2017) OsLG3 contributing to rice grain length and yield was mined by Ho-LAMap. BMC Biol 15:28

    PubMed  PubMed Central  Google Scholar 

  • Zhang L, Yu H, Ma B, Liu G, Wang J, Wang J, Gao R, Li J, Liu J, Xu J, Zhang Y (2017) A natural tandem array alleviates epigenetic repression of IPA1 and leads to superior yielding rice. Nat Commun 8:1–10

    Google Scholar 

  • Zhang LY, Liu DC, Guo XL, Yang WL, Sun JZ, Wang DW, Zhang A (2010) Genomic distribution of quantitative trait loci for yield and yield related traits in common wheat. J Integr Plant Biol 52:996–1007

    PubMed  Google Scholar 

  • Zhang S, Nichols SE, Dong JG (2003) Cloning and characterization of two fructokinases from maize. Plant Sci 165:1051–1058

    CAS  Google Scholar 

  • Zhang Y, Liu J, Xia X, He Z (2014) TaGS-D1 an ortholog of rice OsGS3 is associated with grain weight and grain length in common wheat. Mol Breed 34:1097–1107

    CAS  Google Scholar 

  • Zhao DS, Li QF, Zhang CQ, Zhang C, Yang QQ, Pan LX, Ren XY, Lu J, Gu MH, Liu QQ (2018a) GS9 acts as a transcriptional activator to regulate rice grain shape and appearance quality. Nat Commun 9:1–14

    Google Scholar 

  • Zhao X, Peng Y, Zhang J, Fang P, Wu B (2018b) Identification of QTLs and Meta QTLs for Seven Agronomic Traits in Multiple Maize Populations under Well Watered and Water Stressed Conditions. Crop Sci 58:507–520

    CAS  Google Scholar 

  • Zhou B, Lin JZ, Peng D, Yang YZ, Guo M, Tang DY, Tan X, Liu XM (2017) Plant architecture and grain yield are regulated by the novel DHHC-type zinc finger protein genes in rice (Oryza sativa L.). Plant Sci 254:12–21

    CAS  PubMed  Google Scholar 

  • Zhou Y, He ZH, Sui XX, Xia XC, Zhang XK, Zhang GS (2007) Genetic improvement of grain yield and associated traits in the northern China winter wheat region from 1960 to 2000. Crop Sci 47:245–253

    CAS  Google Scholar 

Download references

Acknowledgements

Thanks are due to the Department of Science and Technology (DST), New Delhi, India for providing INSPIRE fellowship to DKS and to Head, Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, (India) for providing necessary facilities.

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Contributions

P.S., P.K.G. and D.K.S. conceived and designed the project; P.K.G. and P.S. supervised the study; D.K.S. and N.P. conducted the analysis; D.K.S. wrote the paper and P.K.G. and P.S. corrected the final draft. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Puja Srivastava.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Communicated by Xianchun Xia.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 853 KB)

Supplementary file2 (XLS 14587 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saini, D.K., Srivastava, P., Pal, N. et al. Meta-QTLs, ortho-meta-QTLs and candidate genes for grain yield and associated traits in wheat (Triticum aestivum L.). Theor Appl Genet 135, 1049–1081 (2022). https://doi.org/10.1007/s00122-021-04018-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-021-04018-3

Navigation