Skip to main content
Log in

The manufacture of particleboards using mixture of reed (surface layer) and commercial species (middle layer)

Die Herstellung von Spanplatten aus einer Mischung von Schilfrohr (Deckschicht) und Handelsholzarten (Mittelschicht)

  • Originals Originalarbeiten
  • Published:
European Journal of Wood and Wood Products Aims and scope Submit manuscript

Abstract

This research was conducted to investigate the suitability of reed (Arundo donax) as a substitute for wood in laboratory made 3-layer particleboard in order to supplement the supply of raw material for the Iranian particleboard industries. The ratio of the mixture of reed and wood particles were 20:80, 30:70, and 40:60, respectively, in the surface and middle layers. Press temperatures were chosen at two levels of 165 and 185 °C. Three levels of urea formaldehyde resin were selected for the surface layers, namely: 8, 10, and 12 percent. The experimental panels were tested for their mechanical strength including modulus of elasticity (MOE), modulus of rupture (MOR), internal bonding (IB) and physical properties (thickness swelling and water absorption) according to the procedure in DIN 68763. In general, the results show that reed has a positive effect on the mechanical and physical properties of boards. In this research, the treatment with 40% reed, 12% resin in the surface layers and a 185 °C press temperature has resulted in an optimum reed board product.

Zusammenfassung

In dieser Studie wird die Eignung von Schilfrohr (Arundo donax) als Holzersatz für die Herstellung von 3-schichtigen Laborspanplatten untersucht, um die Versorgung der iranischen Spanplattenindustrie mit Rohmaterial zu erweitern. Das Verhältnis von Schilfrohr in den Deckschichten und Holzspänen in den Mittelschichten betrug 20:80, 30:70 und 40:60 Masseprozent. Als Presstemperaturen wurden 165 und 185 °C gewählt. Die verwendeten Harnstoffformaldehydharzgehalte waren 8, 10 und 12 Prozent. Geprüft wurden der Elastizitätsmodul (MOE), die Biegefestigkeit (MOR) und die Querzugfestigkeit sowie die physikalischen Eigenschaften (Dickenquellung und Wasseraufnahme) gemäß dem Verfahren in DIN 68763. Insgesamt zeigen die Ergebnisse, dass Schilfrohr einen positiven Einfluss auf die mechanischen und physikalischen Eigenschaften der Platten hat. Im Rahmen dieser Untersuchung wurde eine optimale Schilfrohrplatte mit einem Mischungsverhältnis von 40:60 und 12 % Harz in den Deckschichten sowie einer Presstemperatur von 185 °C erzielt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alma MH, Kalaycioglu H, Bektas I, Tutuo A (2005) Properties of cotton carpel-based particleboards. Ind Crops Prod 22:141–149

    Article  CAS  Google Scholar 

  • Amir-Hosseini A (2001) Investigation on particleboard properties made of mixture reed and wooden chips. MSc thesis, Tehran Uni., Iran

  • Ashori A, Nourbakhsh A (2008) Effect of press cycle time and resin content on physical and mechanical properties of particleboard panels made from the underutilized low-quality raw materials. Ind Crops Prod 28:225–230

    Article  CAS  Google Scholar 

  • Au KC, Gertjejansen RO (1989) Influence of wafer thickness and resin spread on the properties of paper birch wafer board. For Prod J 39(4):47–50

    CAS  Google Scholar 

  • Bektas I, Guler C, Kalaycıoglu H, Mengenoglu F, Nacar M (2005) The manufacture of particleboards using sunflower stalks (Helianthus annuus I.) and poplar wood (Populus alba L.). J Compos Mater 39:467–473

    Article  CAS  Google Scholar 

  • Bucur Ansell MP V, CY Barlow, Pritchard J, Garros S, Deglise X (1998) Physical methods for characterizing wood composite panel products. Holzforschung 52:553–561

    Article  CAS  Google Scholar 

  • Copur Y, Guler C, Akgul M, Tascioglu C (2007) Some chemical properties of hazelnut husk and its suitability for particleboard production. Build Environ 42:2568–2572

    Article  Google Scholar 

  • DIN Standards: DIN 68763 (1982) Chipboard for special purposes in building construction; concepts, requirements, testing. 1982-03, 4 pp

  • Doost-Hosseini SK (1989) Study the using of reed of Hoorol-Azim in particleboard. Research Project, Ministry of Industry, Iran

  • Guler C, Ozen R (2004) Some properties of particleboards made from cotton stalks (Gossypium hirsitum L.). Holz Roh- Werkst 62:40–43

    Article  CAS  Google Scholar 

  • Guntekin E, Karakus B (2008) Feasibility of using eggplant (Solanum melongena) stalks in the production of experimental particleboard. Ind Crops Prod 27:354–358

    Article  CAS  Google Scholar 

  • Gürü M, Tekeli S, Bilici I (2006) Manufacturing of urea formaldehyde based composite particle board from almond shell. Mater Des 27:1148–1151

    Article  Google Scholar 

  • Heslop G (1997) Ten years of experience with commercial straw particleboard production. In: Wolcott MP, Miklosko LC, Lentz MT (eds) Thirty first international particleboard composite materials symposium proceedings, vol 31. Washington State University, Pullman, pp 109–113

    Google Scholar 

  • Kalaycıoglu H, Nemli G (2006) Producing composite particleboard from kenaf (Hibiscus cannabinus L.) stalks. Ind Crops Prod 24:177–180

    Article  Google Scholar 

  • Khedari J, Nankongnab N, Hirunlabh J, Teekasap S (2004) New low-cost insulation particleboards from mixture of durian peel and coconut coir. Build Environ 39:59–65

    Article  Google Scholar 

  • Khristova P, Yossifov N, Gabir S, Glavche I, Osman Z (1998) Particleboards from sun flower stalks and tannin modified UF resin. Cellul Chem Technol 32:327–337

    CAS  Google Scholar 

  • Kollmann F (1966) Holzspanwerkstoffe, Holzspanplatten und Holzspanformlinge Rohstoffe, Herstellung, Plankosten Qualitätskontrolle usw. Springer, Berlin/Heidelberg/New York

    Google Scholar 

  • Maloney TM (1993) Modern particleboard and dry-process fiberboard manufacturing. Miller Freeman Publication INC, San Francisco, 681 pp

    Google Scholar 

  • Moslemi AA (1974) Particleboard: materials, vol 1. Southern Illinois Uni. Press, Carbondale, 586 pp

    Google Scholar 

  • Namaipoor A (1995) Possibility of utilization of bamboo in surface layer of particleboard. MSc thesis, Gorgan Uni. of Agr. Sci. and Nat. Res. Iran, 141 pp

  • Nemli G, Kirci H, Serdar B, Ay N (2003) Suitability of kiwi pruning for particleboard manufacturing. Ind Crops Prod 17:39–46

    Article  CAS  Google Scholar 

  • Nemli G, Kirci H, Temiz A (2004) Influence of impregnating wood particles with mimosa bark extract on some properties of particleboard. Ind Crops Prod 20:339–344

    Article  Google Scholar 

  • Nemli G, Demirel S, Gümüokaya E, Aslan M, Acar C (2009) Feasibility of incorporating waste grass clippings (Lolium perenne L.) in particleboard composites. Waste Manage 29:1129–1131

    Article  CAS  Google Scholar 

  • Nishimura T, Amin J, Ansell MP (2004) Image analysis and bending properties of model OSB panels as a function of strand distribution, shape and size. Wood Sci Technol 38:297–309

    Article  CAS  Google Scholar 

  • NPA (1993) From start to finish particleboard. National Particleboard Association, 18928 Premiere Court, Gaithersburg, MD 20879

  • Ntalos GA, Grigoriou AH (2002) Characterization and utilization of wine pruning as a wood substitute for particleboard production. Ind Crops Prod 16:59–68

    Article  Google Scholar 

  • Papadopoulos AN, Hague JRB (2003) The potential for using flax shiv as a lignocellulosic raw material for particleboard. Ind Crops Prod 17:143–147

    Article  CAS  Google Scholar 

  • Papadopoulos AN, Hill CAS, Gkaraveli A, Ntalos GA, Karastergiou SP (2004) Bamboo chips (Bambusa vulgaris) as an alternative lignocellulosic raw material for particleboard manufacture. Holz Roh- Werkst 62:36–39

    Article  CAS  Google Scholar 

  • Philippou JL, Zavarin E, Johns WE, Nguyen T (1982) Bonding of particleboard using hydrogen peroxide, lignosulfonates, and furfural alcohol, the effect of process parameters. For Prod J 198232(3):27–32

    Google Scholar 

  • Rowell RM, Norimoto M (1988) Dimensional stability of bamboo particleboards made from acetylated particles. Mokuzai Gakkaishi 34(7):627–629

    CAS  Google Scholar 

  • Sampathrajan A, Vijayaraghavan NC, Swaminathan KR (1992) Mechanical and thermal properties of particleboards made from farm residues. Bioresour Technol 40:249–251

    Article  CAS  Google Scholar 

  • Vital BR, Haselein CR (1988) Quality of particleboard produced from embauba (Cecropia sp.) and bamboo (Bambusa volgaris). Revista Aworezz 12(2):134–145

    Google Scholar 

  • Wang D, Sun XS (2002) Low density particleboard from wheat straw and corn pith. Ind Crops Prod 15:43–50

    Article  CAS  Google Scholar 

  • Xu J, Sugawara R, Widyorini R, Han G, Kawai S (2004) Manufacture and properties of low-density binderless particleboard from kenaf core. J Wood Sci 50:62–67

    Article  Google Scholar 

  • Yin SZ (1987) A study of the technology and properties of oriented bamboo strand board. J Nonjing For Uni 3:65–72

    Google Scholar 

  • Youngquist JA, Krzysik AM, Chow P, Meimban R (1997) Properties of composite panels. In: Rowell RM, Young RA, Rowell JK (eds) Paper and composites from agro-based resources. CRC Press, Boca Raton, p 446

    Google Scholar 

Download references

Acknowledgements

This research has been supported by the Research Deputy of Gorgan Uni. Of Agr. Sci. and Nat. Res. We thank Rza Dahmardeh Behrooz for help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Dahmardeh Ghalehno.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dahmardeh Ghalehno, M., Madhoushi, M., Tabarsa, T. et al. The manufacture of particleboards using mixture of reed (surface layer) and commercial species (middle layer). Eur. J. Wood Prod. 69, 341–344 (2011). https://doi.org/10.1007/s00107-010-0437-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00107-010-0437-7

Keywords

Navigation