Skip to main content

Advertisement

Log in

Cone-beam CT-guided radiotherapy in the management of lung cancer

Diagnostic and therapeutic value

Cone-beam-CT-basierte Strahlentherapie bei Lungenkrebs

Diagnostischer und therapeutischer Wert

  • Original Article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

Background

Recent studies have demonstrated an increase in the necessity of adaptive planning over the course of lung cancer radiation therapy (RT) treatment. In this study, we evaluated intrathoracic changes detected by cone-beam CT (CBCT) in lung cancer patients during RT.

Methods and materials

A total of 71 lung cancer patients treated with fractionated CBCT-guided RT were evaluated. Intrathoracic changes and plan adaptation priority (AP) scores were compared between small cell lung cancer (SCLC, n = 13) and non-small cell lung cancer (NSCLC, n = 58) patients.

Results

The median cumulative radiation dose administered was 54 Gy (range 30–72 Gy) and the median fraction dose was 1.8 Gy (range 1.8–3.0 Gy). All patients were subjected to a CBCT scan at least weekly (range 1–5/week). We observed intrathoracic changes in 83 % of the patients over the course of RT [58 % (41/71) regression, 17 % (12/71) progression, 20 % (14/71) atelectasis, 25 % (18/71) pleural effusion, 13 % (9/71) infiltrative changes, and 10 % (7/71) anatomical shift]. Nearly half, 45 % (32/71), of the patients had one intrathoracic soft tissue change, 22.5 % (16/71) had two, and three or more changes were observed in 15.5 % (11/71) of the patients. Plan modifications were performed in 60 % (43/71) of the patients. Visual volume reduction did correlate with the number of CBCT scans acquired (r = 0.313, p = 0.046) and with the timing of chemotherapy administration (r = 0.385, p = 0.013).

Conclusion

Weekly CBCT monitoring provides an adaptation advantage in patients with lung cancer. In this study, the monitoring allowed for plan adaptations due to tumor volume changes and to other anatomical changes.

Zusammenfassung

Hintergrund

Neuere Studien haben eine zunehmende Notwendigkeit der adaptiven Bestrahlungsplanung im Verlauf der Bestrahlungsserie bei Patienten mit Lungenkrebs nachgewiesen. In der vorliegenden Studie haben wir intrathorakale Änderungen mittels Cone-beam-CT (CBCT) bei Lungenkrebspatienten während der Radiotherapie (RT) analysiert.

Methoden und Materialien

Analysiert wurden 71 Patienten, die eine fraktionierte CBCT-basierte RT bei Lungenkrebs erhalten haben. Intrathorakale Veränderungen und Priorität-Scores für die adaptive Plananpassung (AP) wurden zwischen kleinzelligem (SCLC: 13 Patienten) und nicht-kleinzelligem Bronchialkarzinom (NSCLC: 58 Patienten) verglichen.

Ergebnisse

Die mediane kumulative Strahlendosis betrug 54 Gy (Spanne 30–72 Gy), die mediane Einzeldosis 1,8 Gy (Spanne 1,8–3,0 Gy). Alle Patienten wurden mit einem CBCT-Scan mindestens einmal wöchentlich (Spanne 1–5/Woche) untersucht. Wir beobachteten intrathorakale Änderungen in 83% der Patienten im Verlauf der RT [58 % (41/71) Regression, 17 % (12/71) Progression, 20 % (14/71) Atelektase, 25 % (18/71) Pleuraerguss, 13 % (9/71) infiltrative Veränderungen und 10 % (7/71) anatomische Verschiebung des Tumors]. Fast die Hälfte der Patienten hatte eine intrathorakale Weichgewebeveränderung (45 %, 32/71) 22,5 % (16/71) hatten zwei. Drei oder mehr Veränderungen wurden in 15,5 % (11/71) der Patienten beobachtet. Planmodifikationen wurden in 60 % (43/71) der Patienten durchgeführt. Die visuelle Volumenreduktion korrelierte mit der Anzahl der erworbenen CBCT-Scans (r = 0,313; p = 0,046) als auch mit dem Zeitpunkt der Verabreichung der Chemotherapie (r = 0,385; p = 0,013).

Schlussfolgerung

Das wöchentliche CBCT-Monitoring bietet einen Adaptationsvorteil bei Patienten mit Lungenkrebs. In dieser Studie hat das Monitoring die adaptiven Plananpassungen auf Basis der Tumorvolumenveränderungen sowie der anderen intrathorakalen anatomischen Veränderungen ermöglicht.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Houston KA, Henley SJ, Li J et al (2014) Patterns in lung cancer incidence rates and trends by histologic type in the United States, 2004–2009. Lung Cancer 86:22–28. doi:10.1016/j.lungcan.2014.08.001

    Article  PubMed  Google Scholar 

  2. World Health Organisation (WHO) (2015) The top 10 causes of death. Fact sheets

  3. Rodrigues G, Choy H, Bradley J et al (2015) Definitive radiation therapy in locally advanced non-small cell lung cancer: executive summary of an American Society for Radiation Oncology (ASTRO) evidence-based clinical practice guideline. Pract Radiat Oncol 5:141–148. doi:10.1016/j.prro.2015.02.012

    Article  PubMed  Google Scholar 

  4. Semrau S, Zettl H, Hildebrandt G et al (2014) Older patients with inoperable non-small cell lung cancer: long-term survival after concurrent chemoradiotherapy. Strahlenther Onkol 190:1125–1132. doi:10.1007/s00066-014-0710-5

    Article  PubMed  Google Scholar 

  5. Bradley JD, Paulus R, Komaki R et al (2015) Standard-dose versus high-dose conformal radiotherapy with concurrent and consolidation carboplatin plus paclitaxel with or without cetuximab for patients with stage IIIA or IIIB non-small-cell lung cancer (RTOG 0617): a randomised, two-by-two factorial phase 3 study. Lancet Oncol 16:187–199. doi:10.1016/S1470-2045(14)71207-0

    Article  PubMed  CAS  Google Scholar 

  6. Schimek-Jasch T, Troost EGC, Rücker G et al (2015) A teaching intervention in a contouring dummy run improved target volume delineation in locally advanced non-small cell lung cancer: reducing the interobserver variability in multicentre clinical studies. Strahlenther Onkol 191:525–533. doi:10.1007/s00066-015-0812-8

    Article  PubMed  Google Scholar 

  7. Chi A, Nguyen NP, Welsh JS et al (2014) Strategies of dose escalation in the treatment of locally advanced non-small cell lung cancer: image guidance and beyond. Front Oncol 4:156. doi:10.3389/fonc.2014.00156

    PubMed  PubMed Central  Google Scholar 

  8. Pallotta S, Vanzi E, Simontacchi G et al (2015) Optisches Oberflächenscanning, Portal Imaging und Hautmarkerpositionierung vs. CBCT beim Setup für Thorax- und Beckenbestrahlungen (Surface imaging, portal imaging, and skin marker set-up vs. CBCT for radiotherapy of the thorax and pelvis). Strahlenther Onkol 191:726–733. doi:10.1007/s00066-015-0861-z

    Article  PubMed  Google Scholar 

  9. Kriz J, Spickermann M, Lehrich P et al (2015) Atemanhaltetechnik in tiefer Inspiration bei konventioneller APPA oder intensitätsmodulierter Radiotherapie beim Hodgkin-Lymphom. Vergleich zwischen der “IF-RT” der ILROG und der “IS-RT” der GHSG (Breath-hold technique in conventional APPA or intensity-modulated radiotherapy for Hodgkin’s lymphoma: comparison of ILROG IS-RT and the GHSG IF-RT). Strahlenther Onkol 191:717–725. doi:10.1007/s00066-015-0839-x

    Article  PubMed  Google Scholar 

  10. Chan MKH, Werner R, Ayadi M et al (2015) Comparison of 3D and 4D Monte Carlo optimization in robotic tracking stereotactic body radiotherapy of lung cancer. Strahlenther Onkol 191:161–171. doi:10.1007/s00066-014-0747-5

    Article  PubMed  Google Scholar 

  11. Guckenberger M, Kavanagh A, Partridge M (2012) Combining advanced radiotherapy technologies to maximize safety and tumor control probability in stage III non-small cell lung cancer. Strahlenther Onkol 188:894–900. doi:10.1007/s00066-012-0161-9

    Article  PubMed  CAS  Google Scholar 

  12. van Zijtveld M, Dirkx M, Heijmen B (2007) Correction of conebeam CT values using a planning CT for derivation of the “dose of the day”. Radiother Oncol 85:195–200. doi:10.1016/j.radonc.2007.08.010

    Article  PubMed  Google Scholar 

  13. Kwint M, Conijn S, Schaake E et al (2014) Intra thoracic anatomical changes in lung cancer patients during the course of radiotherapy. Radiother Oncol 113:392–397. doi:10.1016/j.radonc.2014.10.009

    Article  PubMed  Google Scholar 

  14. Siker ML, Tome WA, Mehta MP (2006) Tumor volume changes on serial imaging with megavoltage CT for non-small-cell lung cancer during intensity-modulated radiotherapy: how reliable, consistent, and meaningful is the effect? Int J Radiat Oncol Biol Phys 66:135–141. doi:10.1016/j.ijrobp.2006.03.064

    Article  PubMed  Google Scholar 

  15. Woodford C, Yartsev S, Dar AR et al (2007) Adaptive radiotherapy planning on decreasing gross tumor volumes as seen on megavoltage computed tomography images. Int J Radiat Oncol Biol Phys 69:1316–1322. doi:10.1016/j.ijrobp.2007.07.2369

    Article  PubMed  Google Scholar 

  16. Haasbeek, Cornelis JA, Lagerwaard FJ, Cuijpers JP et al (2007) Is adaptive treatment planning required for stereotactic radiotherapy of stage I non-small-cell lung cancer? Int J Radiat Oncol Biol Phys 67:1370–1374. doi:10.1016/j.ijrobp.2006.11.018

  17. Bosmans G, Baardwijk A, Dekker A et al (2006) Intra-patient variability of tumor volume and tumor motion during conventionally fractionated radiotherapy for locally advanced non-small-cell lung cancer. A prospective clinical study. Int J Radiat Oncol Biol Phys 66:748–753. doi:10.1016/j.ijrobp.2006.05.022

    Article  PubMed  Google Scholar 

  18. Møller DS, Khalil AA, Knap MM et al (2014) Adaptive radiotherapy of lung cancer patients with pleural effusion or atelectasis. Radiother Oncol 110:517–522. doi:10.1016/j.radonc.2013.10.013

    Article  PubMed  Google Scholar 

  19. Bral S, Duchateau M, Ridder M de et al (2009) Volumetric response analysis during chemoradiation as predictive tool for optimizing treatment strategy in locally advanced unresectable NSCLC. Radiother Oncol 91:438–442. doi:10.1016/j.radonc.2009.03.015

    Article  PubMed  Google Scholar 

  20. Sonke J, Belderbos J (2010) Adaptive radiotherapy for lung cancer. Semin Radiat Oncol 20:94–106. doi:10.1016/j.semradonc.2009.11.003

    Article  PubMed  Google Scholar 

  21. Brink C, Bernchou U, Bertelsen A et al (2014) Locoregional control of non-small cell lung cancer in relation to automated early assessment of tumor regression on cone beam computed tomography. Int J Radiat Oncol Biol Phys 89:916–923. doi:10.1016/j.ijrobp.2014.03.038

    Article  PubMed  Google Scholar 

  22. Li R, Han B, Meng B et al (2013) Clinical implementation of intrafraction cone beam computed tomography imaging during lung tumor stereotactic ablative radiation therapy. Int J Radiat Oncol Biol Phys 87:917–923. doi:10.1016/j.ijrobp.2013.08.015

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kupelian PA, Ramsey C, Meeks SL et al (2006) Serial megavoltage CT imaging during external beam radiotherapy for non-small-cell lung cancer: in regard to Kupelian et al. (Int J Radiat Oncol Biol Phys 2005;63. 1024–1028) - In response to Dr. Dar et al. Int J Radiat Oncol Biol Phys 64:328–329. doi:10.1016/j.ijrobp.2005.08.039

    Article  Google Scholar 

  24. Knap MM, Hoffmann L, Nordsmark M et al (2010) Daily cone-beam computed tomography used to determine tumour shrinkage and localisation in lung cancer patients. Acta Oncol 49:1077–1084. doi:10.3109/0284186X.2010.498434

    Article  PubMed  Google Scholar 

  25. Fox J, Ford E, Redmond K et al (2009) Quantification of tumor volume changes during radiotherapy for non-small-cell lung canceR. Int J Radiat Oncol Biol Phys 74:341–348. doi:10.1016/j.ijrobp.2008.07.063

    Article  PubMed  Google Scholar 

  26. Guckenberger M, Wilbert J, Richter A et al (2011) Potential of adaptive radiotherapy to escalate the radiation dose in combined radiochemotherapy for locally advanced non-small cell lung cancer. Int J Radiat Oncol Biol Phys 79:901–908. doi:10.1016/j.ijrobp.2010.04.050

    Article  PubMed  Google Scholar 

  27. Elsayad K (2014) Image guided radiotherapy via cone beam computed tomography for pulmonary malignancies. ECR

  28. Guckenberger M, Richter A, Wilbert J et al (2011) Adaptive radiotherapy for locally advanced non-small-cell lung cancer does not underdose the microscopic disease and has the potential to increase tumor control. Int J Radiat Oncol Biol Phys 81:e275–e282. doi:10.1016/j.ijrobp.2011.01.067

    Article  PubMed  Google Scholar 

  29. Tvilum M, Khalil AA, Møller DS et al (2015) Clinical outcome of image-guided adaptive radiotherapy in the treatment of lung cancer patients. Acta Oncol 54:1430–1437. doi:10.3109/0284186X.2015.1062544

    Article  PubMed  CAS  Google Scholar 

  30. Koo TR, Moon SH, Lim YJ et al (2014) The effect of tumor volume and its change on survival in stage III non-small cell lung cancer treated with definitive concurrent chemoradiotherapy. Radiat Oncol 9:283. doi:10.1186/s13014-014-0283-6

    Article  PubMed  PubMed Central  Google Scholar 

  31. Zhang P, Yorke E, Hu Y et al (2014) Predictive treatment management: incorporating a predictive tumor response model into robust prospective treatment planning for non-small cell lung cancer. Int J Radiat Oncol Biol Phys 88:446–452. doi:10.1016/j.ijrobp.2013.10.038

    Article  PubMed  Google Scholar 

  32. Vaaler AK, Forrester JM, Lesar M et al (1997) Obstructive atelectasis in patients with small cell lung cancer - Incidence and response to treatment. Chest 111:115–120

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Theodor Eich M.D. Ph.D..

Ethics declarations

Conflict of interest

K. Elsayad, J. Kriz, G. Reinartz, S. Scobioala, I. Ernst, U. Haverkamp, and H.T. Eich state that there are no conflicts of interest.

The accompanying manuscript does not include studies on humans or animals.

Additional information

These data were presented in part at the Annual Meeting of the German Society for Radiation Oncology (DEGRO), June 25–28, 2015, Hamburg, Germany and were presented at the Annual Meeting of the American Society for Radiation Oncology (ASTRO), October 18–21, 2015, in San Antonio, TX, USA.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elsayad, K., Kriz, J., Reinartz, G. et al. Cone-beam CT-guided radiotherapy in the management of lung cancer. Strahlenther Onkol 192, 83–91 (2016). https://doi.org/10.1007/s00066-015-0927-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-015-0927-y

Keywords

Schlüsselwörter

Navigation