Skip to main content
Log in

The rate of mitochondrial 12S rRNA gene evolution is similar in freshwater turtles and marsupials

  • Articles
  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Assertions that the “conventional” rate of mitochondrial DNA (mtDNA) evolution is reduced in poikilotherms in general and turtles in particular were tested for side-necked turtles (Pleurodira: Chelidae). Homologous data sets of mitochondrial 12S rRNA gene sequences were used to compare the average divergence between the Australian and South American species for two Gondwanan groups: the chelid turtles and the marsupials. The mean nucleotide divergences between continental groups for both the turtles and the marsupials are remarkably similar. These data suggest that the rate of evolution of mitochondrial 12S rRNA gene is not substantially slower in turtles than in the homeothermic marsupials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Avise JC, Bowen BW, Lamb T, Meylan AB, Bermingham E (1992) Mitochondrial DNA evolution at a turtle’s pace: evidence for a low genetic variability and reduced microevolutionary rate in the Testudines. Mol Biol Evol 9:457–473

    PubMed  CAS  Google Scholar 

  • Benton MJ (1993) Reptilia. In: Benton MJ (ed) The fossil record 2. Chapman and Hall, London, pp681–715

    Google Scholar 

  • Bowen BW, Nelson WS, Avise JC (1993) A molecular phylogeny for marine turtles: trait mapping, rate assessment, and conservation relevance. Proc Natl Acad Sci USA 90:5574–5577

    Article  PubMed  CAS  Google Scholar 

  • Brown WM, George MJ, Wilson AC (1979) Rapid evolution of animal mitochondrial DNA. Proc Natl Acad Sci USA 76:1967–1971

    Article  PubMed  CAS  Google Scholar 

  • Canatore P, Roberti M, Pesole G, Ludovico A, Milella F, Gadaleta MN, Saccone C (1994) Evolutionary analysis of cytochrome b sequences in some Perciformes: evidence for a slower rate of evolution than in mammals. J Mol Evol 39:589–597

    Article  Google Scholar 

  • Cannatella DC, de Sa D (1993) Xenopus laevis as a model organism. Systbiol 42:467–507

    Google Scholar 

  • Chen B-Y, Mao S-H, Ling Y-H (1980) Evolutionary relationships of turtles suggested by immunological cross-reactivity of albumins. Comput Biochem Physiol 66B:421–425

    Article  CAS  Google Scholar 

  • Encalada SE, Lahanas PN, Bjorndal KA, Bolten AB, Miyamoto MM, Bowen BW (1996) Phylogeography and population structure of the Atlantic and Mediterranean green turtle Chelonia mydas: a mitochondrial DNA control region sequence assessment. Mol Ecol 5: 473–483

    Article  PubMed  CAS  Google Scholar 

  • Gaffney ES (1981) A review of the fossil turtles of Australia. Am Mus Novitates 2720:1–38

    Google Scholar 

  • Hickson RE, Simon C, Cooper A, Spicer GS, Sullivan J, Penny D (1996) Conserved sequence motifs, alignment, and secondary structure for the third domain of animal 12S rRNA. Mol Biol Evol 13:150–169

    PubMed  CAS  Google Scholar 

  • Hillis DM, Mable BK, Moritz C (1996) Applications of molecular systematics: the state of the field and a look to the future. In: Hillis DM, Moritz C, Mable BK (eds) Molecular systematics. Sinauer, Sunderland, pp515–543

    Google Scholar 

  • Kirsch J (1984) Marsupial origins: taxonomic and biological considerations. In: Archer M, Clayton G (eds) Vertebrate zoogeography and evolution in Australasia (animals in space and time). Hesperian Press, Carlisle, WA, pp627–632

    Google Scholar 

  • Kocher TD, Thomas WK, Meyer A, Edwards SV, Paabo S, Villabianca FX, Wilson AC (1989) Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proc Natl Acad Sci USA 86:6196–6200

    Article  PubMed  CAS  Google Scholar 

  • Lamb T, Avise JC, Gibbons JW (1989) Phylogeographic patterns in mitochondrial DNA of the desert tortoise (Xerobates agassizi) and evolutionary relationships among the North American gopher tortoises. Evolution 43:76–87

    Article  CAS  Google Scholar 

  • Lamb T, Lydeard C, Walker RB, Gibbons JW (1994) Molecular systematics of map turtles (Graptemys): a comparison of mitochondrial restriction site versus sequence data. Systbiol 43:543–559

    Google Scholar 

  • Martin AP, Palumbi SR (1993) Body size, metabolic rate, generation time, and the molecular clock. Proc Natl Acad Sci USA 90:4087–4091

    Article  PubMed  CAS  Google Scholar 

  • Martin AP, Naylor GJP, Palumbi SR (1992) Rates of mitochondrial DNA evolution in sharks are slow compared with mammals. Nature 357:153–155

    Article  PubMed  CAS  Google Scholar 

  • Mindell DP, Honeycutt RL (1990) Ribosomal RNA in vertebrates: evolution and phylogenetic applications. Annu Rev Ecol Syst 21: 541–566

    Article  Google Scholar 

  • Mindell DP, Knight A, Baer C, Huddleston CJ (1996) Slow rates of molecular evolution in birds and the metabolic rate and body temperature hypothesis. Mol Biol Evol 13:422–426

    CAS  Google Scholar 

  • Pritchard PCH (1979) Taxonomy, evolution and zoogeography. In: Harless M, Morlock H (eds) Turtles: perspectives and research. John Wiley, New York, pp 1–42

    Google Scholar 

  • Seddon JM, Georges A, Baverstock PR, McCord W (1997) Phylogenetic relationships of chelid turtles (Pleurodira: Chelidae) based on mitochondrial 12S rRNA gene sequence variation. Mol Phylo Evol 7:55–61

    Article  CAS  Google Scholar 

  • Springer MS, Westerman M, Kirsch JAW (1994) Relationships among orders and families of marsupials based on 12S ribosomal DNA sequences and the timing of the marsupial radiation. J Mamm Evol 2:85–115

    Article  Google Scholar 

  • Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526

    PubMed  CAS  Google Scholar 

  • Thomas WK, Bechenbach AT (1989) Variation in Salmonid mitochondrial DNA: evolutionary constraints and mechanisms of substitution. J Mol Evol 29:23–245

    Article  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer M. Seddon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seddon, J.M., Baverstock, P.R. & Georges, A. The rate of mitochondrial 12S rRNA gene evolution is similar in freshwater turtles and marsupials. J Mol Evol 46, 460–464 (1998). https://doi.org/10.1007/PL00006326

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/PL00006326

Key words

Navigation