Skip to main content
Log in

A Protein Related to Eucaryal and Bacterial DNA-Motor Proteins in the Hyperthermophilic Archaeon Sulfolobus acidocaldarius

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract.

We have isolated a new gene encoding a putative 103-kDa protein from the hyperthermophilic archaeon Sulfolobus acidocaldarius. Analysis of the deduced amino-acid sequence shows an extended central domain, predicted to form coiled-coil structures, and two terminal domains that display purine NTPase motifs. These features are reminiscent of mechanochemical motor proteins which use the energy of ATP hydrolysis to move specific cellular components. Comparative analysis of the amino-acid sequence of the terminal domains and predicted structural organization of this putative purine NTPase show that it is related both to eucaryal proteins from the “SMC family” involved in the condensation of chromosomes and to several bacterial and eucaryal proteins involved in DNA recombination/repair. Further analyses revealed that these proteins are all members of the so called “UvrA-related NTP-binding proteins superfamily” and form a large subgroup of motor-like NTPases involved in different DNA processing mechanisms. The presence of such protein in Archaea, Bacteria, and Eucarya suggests an early origin of DNA-motor proteins that could have emerged and diversified by domain shuffling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alani E, Subbiah S, Kleckner N (1989) The yeast RAD50 gene encodes a predicted 153-kD protein containing a purine nucleotide-binding domain and two large heptad-repeat regions. Genetics 122: 47–57

    PubMed  CAS  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipraan DJ (1990) Basic local alignment search tool. J Mol Biol 215: 403–410

    PubMed  CAS  Google Scholar 

  • Bairoch A (1993) The PROSITE dictionary of sites and patterns in proteins, its current status. Nucleic Acids Res 21: 3097–3103

    Article  PubMed  CAS  Google Scholar 

  • Chuang P-T, Albertson DG, Meyer BJ (1994) DPY-27: a chromosome condensation protein homolog that regulates C. elegans dosage compensation through association with the X chromosome. Cell 79: 459–474

    Article  PubMed  CAS  Google Scholar 

  • Confalonieri F, Elie C, Nadal M, Bouthier de La Tour C, Forterre P, Duguet M (1993) Reverse gyrase: a helicase-like domain and a type I topoisomerase in the same polypeptide. Proc Natl Acad Sci USA 90: 4753–4757

    Article  PubMed  CAS  Google Scholar 

  • Dessen P, Fondrat C, Valencien C, Mugnier C (1990) BISANCE: a French service for access to biomolecular sequence databases. Comput Appl Biosci 6: 355–356

    PubMed  CAS  Google Scholar 

  • Doolittle RF, Johnson MS, Husain I, Van Houten B, Thomas DC, Sancar A (1986) Domainal evolution of a prokaryotic DNA repair protein and its relationship to active-transport proteins. Nature 323: 451–453

    Article  PubMed  CAS  Google Scholar 

  • Elie C, De Recondo AM, Forterre P (1989) Thermostable DNA polymerase from the archaebacterium Sulfolobus acidocaldarius: purification, characterization and immunological properties. Eur J Biochem 178: 619–626

    Article  PubMed  CAS  Google Scholar 

  • Forterre P, Elie C (1993) Chromosome structure, DNA topoisomerases, and DNA polymerases in Archaea. In: Kates M, Kushner DJ, Matheson AT (eds) The biochemistry of Archaea. New comprehensive biochemistry, Elsevier, Amsterdam. vol. 26. p 325

    Google Scholar 

  • Gasser SM (1995) Coiling up chromosomes. Curr Biol 5: 357–360

    Article  PubMed  CAS  Google Scholar 

  • Gorbalenya AE, Koonin EV (1990) Superfamily of Uvra-related NTP- binding proteins. Implications for rational classification of recombination/repair systems. J Mol Biol 213: 583–591

    Article  PubMed  CAS  Google Scholar 

  • Grayling RA, Sandman K, Reeve JN (1994) Archaeal DNA binding proteins and chromosome structure. In: Pfeifer F, Palm P, Scleifer K-H (eds) Molecular biology of Archaea. Gustav Fisher, Verlag, p82

    Google Scholar 

  • Higgins CF, Hiles ID, Salmond GPC, Gill DR, Downie JA, Evans IJ, Holland IB, Gray L, Buckel SD, Bell AW, Hermodson MA (1986) A family of related ATP-binding subunits coupled to many distinct biological processes in bacteria. Nature 323: 448–450

    Article  PubMed  CAS  Google Scholar 

  • Higgins CF, Gallagher MP, Mimmack ML, Pearce SR (1988) A family of closely related ATP-binding subunits from prokaryotic and eukaryotic cells. Bioessays 8: 111–116

    Article  PubMed  CAS  Google Scholar 

  • Hirano T (1995) Biochemical and genetic dissection of mitotic chromosome condensation. Trends Biochem Sci 20: 357–361

    Article  PubMed  CAS  Google Scholar 

  • Hirano T, Mitchison TJ (1994) A heterodimeric coiled-coil protein required for mitotic chromosome condensation in vitro. Cell 79: 449–458

    Article  PubMed  CAS  Google Scholar 

  • Hirano T, Mitchison TJ, Swedlow JR (1995) The SMC family: from chromosome condensation to dosage compensation. Curr Opin Cell Biol 7: 329–336

    Article  PubMed  CAS  Google Scholar 

  • Huynh TV, Young RA, Davis RW (1985) Constructing and screening cDNA libraries in λgt10 and λgt11. In: Rickwood D, Hames BD (eds) DNA cloning, vol 1, a practical approach. Glover DM, IRL Press, Oxford, Washington DC, p49

    Google Scholar 

  • Lehmann AR, Walicka M, Griffiths DJF, Murray JM, Watts FZ, McCready S, Carr AM (1995) The radl8 gene of Schizosaccharomyces pombe defines a new subgroup of the SMC superfamily involved in DNA repair. Mol Cell Biol 15: 7067–7080

    PubMed  CAS  Google Scholar 

  • Lupas A, Van Dyke M, Stock J (1991) Predicting coiled coils from protein sequences. Science 252: 1162–1164

    Article  CAS  Google Scholar 

  • Notarnicola SM, McIntosh MA, Wise KS (1991) A Mycoplasma hyorhinis protein with sequence similarities to nucleotide-binding enzymes. Gene 97: 77–85

    Article  PubMed  CAS  Google Scholar 

  • Pause A, Sonenberg N (1992) Mutational analysis of a DEAD box RNA helicase: the mammalian translation initiation factor eIF-4A. EMBO J 11: 2643–2654

    PubMed  CAS  Google Scholar 

  • Pearson WR, Lipman DJ (1988) Improved tools for biological sequence comparison. Proc Natl Acad Sci USA 85: 2444–2448

    Article  PubMed  CAS  Google Scholar 

  • Peterson CL (1994) The SMC family: novel motor proteins for chromosome condensation? Cell 79: 389–392

    Article  PubMed  CAS  Google Scholar 

  • Saitoh N, Goldberg IG, Wood ER, Earnshaw WC (1994) SeIl: an abundant chromosome scaffold protein is a member of a family of putative ATPases with an unusual predicted tertiary structure. J Cell Biol 127: 303–318

    Article  PubMed  CAS  Google Scholar 

  • Saitoh N, Goldberg I, Earnshaw WC (1995) The SMC proteins and the coming of age of the chromosome scaffold hypothesis. Bioessays 17: 759–766

    Article  PubMed  CAS  Google Scholar 

  • Saka Y, Sutani T, Yamashita Y, Saitoh S, Takeuchi M, Nakaseko Y, Yanagida M (1994) Fission yeast cut3 and cutl4, members of a ubiquitous protein family, are required for chromosome condensation and segregation in mitosis. EMBO J 13: 4938–4952

    PubMed  CAS  Google Scholar 

  • Sanger F, Nicklen, Coulson AR (1977) DNA sequencing with chain- terminating inhibitors. Proc Natl Acad Sci USA 74: 5463–5467

    Article  PubMed  CAS  Google Scholar 

  • Sharpies GJ, Leach DRF (1995) Structural and functional similarities between the SbcCD proteins of Escherichia coli and the Rad50 and MRE11 (RAD32) recombination and repair proteins of yeast. Mol Microbiol 17: 1215–1220

    Article  Google Scholar 

  • Stanch MR, Sandman K, Reeve JN, Summers MF (1996) NMR structure of HMfB from the hyperthermophile, Methanothermus fervidus, confirms that this archaeal protein is a histone. J Mol Biol 255: 187–203

    Article  Google Scholar 

  • Strunnikov AV, Larionov VL, Koshland D (1993) SMC1: an essential yeast gene encoding a putative head-rod-tail protein is required for nuclear division and defines a new ubiquitous protein family. J Cell Biol 123: 1635–1648

    Article  PubMed  CAS  Google Scholar 

  • Strunnikov AV, Hogan E, Koschland D (1995) SMC2, a Saccharomyces cerevisiae gene essential for chromosome segregation and condensation, defines a subgroup within the SMC family. Genes Dev 9: 587–599

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22: 4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Walker RA, Sheetz MP (1993) Cytoplasmic microtubule-associated motors. Annu Rev Biochem 62: 429–451

    Article  PubMed  CAS  Google Scholar 

  • Walker JE, Saraste M, Runswick MJ, Gay NJ (1982) Distantly related sequences in the α-and β-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J 1: 945–951

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christiane Elie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elie, C., Baucher, M.F., Fondrat, C. et al. A Protein Related to Eucaryal and Bacterial DNA-Motor Proteins in the Hyperthermophilic Archaeon Sulfolobus acidocaldarius . J Mol Evol 45, 107–114 (1997). https://doi.org/10.1007/PL00006193

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/PL00006193

Key words

Navigation