Skip to main content
Log in

Fast computation of the Smith form of a sparse integer matrix

  • Published:
computational complexity Aims and scope Submit manuscript

Abstract.

We present a new probabilistic algorithm to compute the Smith normal form of a sparse integer matrix \( A \in {\Bbb Z}^{m \times n} \). The algorithm treats A as a “black box”—A is only used to compute matrix-vector products and we do not access individual entries in A directly. The algorithm requires about \( O(m^2 {\rm log} \parallel A \parallel) \) black box evaluations \( w \mapsto Aw\,{\rm mod}\,p \) for word-sized primes p and \( w \in {\Bbb Z}^{n \times 1}_p \), plus \( O(m^2 n\,{\rm log} \parallel A \parallel +\,m^3\,{\rm log^2} \parallel A \parallel) \) additional bit operations. For sparse matrices this represents a substantial improvement over previously known algorithms. The new algorithm suffers from no “fill-in” or intermediate value explosion, and uses very little additional space. We also present an asymptotically fast algorithm for dense matrices which requires about \( O(n \cdot {\rm MM}(m)\,{\rm log} \parallel A \parallel +\,m^3\,{\rm log^2} \parallel A \parallel) \) bit operations, where O(MM(m)) operations are sufficient to multiply two \( m \times m \) matrices over a field. Both algorithms are probabilistic of the Monte Carlo type — on any input they return the correct answer with a controllable, exponentially small probability of error.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Additional information

Received: March 9, 2000.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giesbrecht, M. Fast computation of the Smith form of a sparse integer matrix. Comput. complex. 10, 41–69 (2001). https://doi.org/10.1007/PL00001611

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/PL00001611

Navigation