Skip to main content
Log in

Modification of glutamate receptors by phospholipase A2: its role in adaptive neural plasticity

  • Published:
Cellular and Molecular Life Sciences CMLS Aims and scope Submit manuscript

Abstract.

Long-term potentiation (LTP) and long-term depression (LTD) are two electrophysiological models that have been studied extensively in recent years as they may represent basic mechanisms in many neuronal networks to store certain types of information. In several brain regions, it has been shown that these two forms of synaptic plasticity require sufficient dendritic depolarization, with the amplitude of the calcium signal being crucial for the generation of either LTP or LTD. The rise in calcium concentration mediated by the N-methyl-d-aspartate (NMDA) subtype of glutamate receptors has been proposed to stimulate various calcium-dependent enzymatic processes that could convert the induction signal into long-lasting changes in synaptic structure; protein kinases and phosphatases have so far been considered predominantly with regard to LTP and LTD formation. According to several lines of experimental evidence, changes in synaptic function observed with LTP and LTD are thought to be the result of modifications of postsynaptic currents mediated by the α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) subtype of glutamate receptors. Moreover, it has become apparent recently that activation of the calcium-dependent enzyme phospholipase A2 (PLA2) could be part of the molecular mechanisms involved in alterations of AMPA receptor properties during long-term changes in synaptic operation. In the present review, we will first describe the results that indicate a critical role of the phospholipases in regulating synaptic function. Next, sections will be devoted to the effects of PLA2 and phospholipids on the binding properties of glutamate receptors, and a revised biochemical model will be presented as an attempt to integrate the PLA2 enzyme into the mechanisms (in particular kinases and phosphatases) that participate in adaptive neural plasticity. Finally, we will review data relevant to the issue of selective changes in AMPA binding after environmental enrichment and LTP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Massicotte, G. Modification of glutamate receptors by phospholipase A2: its role in adaptive neural plasticity. CMLS, Cell. Mol. Life Sci. 57, 1542–1550 (2000). https://doi.org/10.1007/PL00000639

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/PL00000639

Navigation