Skip to main content
Log in

Equation of state of hot and dense QCD: resummed perturbation theory confronts lattice data

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We perform a detailed analysis of the predictions of resummed perturbation theory for the pressure and the second-, fourth-, and sixth-order diagonal quark number susceptibilities in a hot and dense quark-gluon plasma. First, we present an exact one-loop calculation of the equation of state within hard-thermal-loop perturbation theory (HTLpt) and compare it to a previous one-loop HTLpt calculation that employed an expansion in the ratios of thermal masses and the temperature. We find that this expansion converges reasonably fast. We then perform a resummation of the existing four-loop weak coupling expression for the pressure, motivated by dimensional reduction. Finally, we compare the exact one-loop HTLpt and resummed dimensional reduction results with state-of-the-art lattice calculations and a recent mass-expanded three-loop HTLpt calculation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Tannenbaum, Highlights from BNL-RHIC, arXiv:1201.5900 [INSPIRE].

  2. B. Müller, J. Schukraft and B. Wyslouch, First results from Pb + Pb collisions at the LHC, Ann. Rev. Nucl. Part. Sci. 62 (2012) 361 [arXiv:1202.3233] [INSPIRE].

    Article  ADS  Google Scholar 

  3. H. Satz, The quark-gluon plasma: a short introduction, Nucl. Phys. A862-863 (2011) 4 [arXiv:1101.3937] [INSPIRE].

    Article  ADS  Google Scholar 

  4. HotQCD collaboration, A. Bazavov et al., Fluctuations and correlations of net baryon number, electric charge and strangeness: a comparison of lattice QCD results with the hadron resonance gas model, Phys. Rev. D 86 (2012) 034509 [arXiv:1203.0784] [INSPIRE].

    Google Scholar 

  5. A. Bazavov et al., Quark number susceptibilities at high temperatures, arXiv:1309.2317 [INSPIRE].

  6. C. Schmidt, QCD bulk thermodynamics and conserved charge fluctuations with HISQ fermions, J. Phys. Conf. Ser. 432 (2013) 012013 [arXiv:1212.4283] [INSPIRE].

    Article  Google Scholar 

  7. BNL-Bielefeld collaboration, C. Schmidt, Baryon number and charge fluctuations from lattice QCD, Nucl. Phys. A 904-905 (2013) 865c [arXiv:1212.4278] [INSPIRE].

    Google Scholar 

  8. S. Borsányi et al., Fluctuations of conserved charges at finite temperature from lattice QCD, JHEP 01 (2012) 138 [arXiv:1112.4416] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  9. S. Borsányi, Thermodynamics of the QCD transition from lattice, Nucl. Phys. A 904-905 (2013) 270c [arXiv:1210.6901] [INSPIRE].

    Article  ADS  Google Scholar 

  10. S. Hands, P. Kenny, S. Kim and J.-I. Skullerud, Lattice study of dense matter with two colors and four flavors, Eur. Phys. J. A 47 (2011) 60 [arXiv:1101.4961] [INSPIRE].

    Article  ADS  Google Scholar 

  11. S. Cotter, P. Giudice, S. Hands and J.-I. Skullerud, Towards the phase diagram of dense two-color matter, Phys. Rev. D 87 (2013) 034507 [arXiv:1210.4496] [INSPIRE].

    ADS  Google Scholar 

  12. A. Vuorinen, The pressure of QCD at finite temperatures and chemical potentials, Phys. Rev. D 68 (2003) 054017 [hep-ph/0305183] [INSPIRE].

    ADS  Google Scholar 

  13. A. Vuorinen, Quark number susceptibilities of hot QCD up to g 6 ln g, Phys. Rev. D 67 (2003) 074032 [hep-ph/0212283] [INSPIRE].

    ADS  Google Scholar 

  14. A. Vuorinen, The pressure of QCD at finite temperatures and chemical potentials, Phys. Rev. D 68 (2003) 054017 [hep-ph/0305183] [INSPIRE].

    ADS  Google Scholar 

  15. A. Ipp, K. Kajantie, A. Rebhan and A. Vuorinen, The pressure of deconfined QCD for all temperatures and quark chemical potentials, Phys. Rev. D 74 (2006) 045016 [hep-ph/0604060] [INSPIRE].

    ADS  Google Scholar 

  16. J.-P. Blaizot, E. Iancu and A. Rebhan, Quark number susceptibilities from HTL resummed thermodynamics, Phys. Lett. B 523 (2001) 143 [hep-ph/0110369] [INSPIRE].

    Article  ADS  Google Scholar 

  17. J.-P. Blaizot, E. Iancu and A. Rebhan, Comparing different hard thermal loop approaches to quark number susceptibilities, Eur. Phys. J. C 27 (2003) 433 [hep-ph/0206280] [INSPIRE].

    Article  ADS  Google Scholar 

  18. P. Chakraborty, M.G. Mustafa and M.H. Thoma, Quark number susceptibility in hard thermal loop approximation, Eur. Phys. J. C 23 (2002) 591 [hep-ph/0111022] [INSPIRE].

    Article  ADS  Google Scholar 

  19. P. Chakraborty, M.G. Mustafa and M.H. Thoma, Quark number susceptibility, thermodynamic sum rule and hard thermal loop approximation, Phys. Rev. D 68 (2003) 085012 [hep-ph/0303009] [INSPIRE].

    ADS  Google Scholar 

  20. N. Haque, M.G. Mustafa and M.H. Thoma, Conserved density fluctuation and temporal correlation function in HTL perturbation theory, Phys. Rev. D 84 (2011) 054009 [arXiv:1103.3394] [INSPIRE].

    ADS  Google Scholar 

  21. R. Baier and K. Redlich, Hard thermal loop resummed pressure of a degenerate quark gluon plasma, Phys. Rev. Lett. 84 (2000) 2100 [hep-ph/9908372] [INSPIRE].

    Article  ADS  Google Scholar 

  22. J.O. Andersen and M. Strickland, The equation of state for dense QCD and quark stars, Phys. Rev. D 66 (2002) 105001 [hep-ph/0206196] [INSPIRE].

    ADS  Google Scholar 

  23. J.O. Andersen, S. Mogliacci, N. Su and A. Vuorinen, Quark number susceptibilities from resummed perturbation theory, Phys. Rev. D 87 (2013) 074003 [arXiv:1210.0912] [INSPIRE].

    ADS  Google Scholar 

  24. N. Haque, M.G. Mustafa and M. Strickland, Quark number susceptibilities from two-loop hard thermal loop perturbation theory, JHEP 07 (2013) 184 [arXiv:1302.3228] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. N. Haque, M.G. Mustafa and M. Strickland, Two-loop HTL pressure at finite temperature and chemical potential, Phys. Rev. D 87 (2013) 105007 [arXiv:1212.1797] [INSPIRE].

    ADS  Google Scholar 

  26. N. Haque, J.O. Andersen, M.G. Mustafa, M. Strickland and N. Su, Three-loop HTLpt pressure and susceptibilities at finite temperature and density, arXiv:1309.3968 [INSPIRE].

  27. A. Ipp and A. Rebhan, Thermodynamics of large-N f QCD at finite chemical potential, JHEP 06 (2003) 032 [hep-ph/0305030] [INSPIRE].

    Article  ADS  Google Scholar 

  28. A. Ipp, A. Rebhan and A. Vuorinen, Perturbative QCD at nonzero chemical potential: comparison with the large-N f limit and apparent convergence, Phys. Rev. D 69 (2004) 077901 [hep-ph/0311200] [INSPIRE].

    ADS  Google Scholar 

  29. J. Casalderrey-Solana and D. Mateos, Off-diagonal flavour susceptibilities from AdS/CFT, JHEP 08 (2012) 165 [arXiv:1202.2533] [INSPIRE].

    Article  ADS  Google Scholar 

  30. A. Bhattacharyya, P. Deb, A. Lahiri and R. Ray, Susceptibilities with multi-quark interactions in PNJL model, Phys. Rev. D 82 (2010) 114028 [arXiv:1008.0768] [INSPIRE].

    ADS  Google Scholar 

  31. D.-K. He, X.-X. Ruan, Y. Jiang, W.-M. Sun and H.-S. Zong, A model study of quark-number susceptibility at finite chemical potential and temperature, Phys. Lett. B 680 (2009) 432 [INSPIRE].

    Article  ADS  Google Scholar 

  32. C. Ratti, S. Roessner and W. Weise, Quark number susceptibilities: lattice QCD versus PNJL model, Phys. Lett. B 649 (2007) 57 [hep-ph/0701091] [INSPIRE].

    Article  ADS  Google Scholar 

  33. S. Shi and J. Liao, Conserved charge fluctuations and susceptibilities in strongly interacting matter, JHEP 06 (2013) 104 [arXiv:1304.7752] [INSPIRE].

    Article  ADS  Google Scholar 

  34. J.O. Andersen and M. Strickland, Mass expansions of screened perturbation theory, Phys. Rev. D 64 (2001) 105012 [hep-ph/0105214] [INSPIRE].

    ADS  Google Scholar 

  35. D. Seipt, M. Bluhm and B. Kampfer, Quark mass dependence of thermal excitations in QCD in one-loop approximation, J. Phys. G 36 (2009) 045003 [arXiv:0810.3803] [INSPIRE].

    Article  ADS  Google Scholar 

  36. J.-P. Blaizot, E. Iancu and A. Rebhan, Thermodynamics of the high temperature quark gluon plasma, hep-ph/0303185 [INSPIRE].

  37. U. Kraemmer and A. Rebhan, Advances in perturbative thermal field theory, Rept. Prog. Phys. 67 (2004) 351 [hep-ph/0310337] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  38. J.O. Andersen and M. Strickland, Resummation in hot field theories, Annals Phys. 317 (2005) 281 [hep-ph/0404164] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  39. J.O. Andersen, E. Braaten and M. Strickland, Hard thermal loop resummation of the thermodynamics of a hot gluon plasma, Phys. Rev. D 61 (2000) 014017 [hep-ph/9905337] [INSPIRE].

    ADS  Google Scholar 

  40. J.O. Andersen, E. Braaten and M. Strickland, Hard thermal loop resummation of the free energy of a hot quark-gluon plasma, Phys. Rev. D 61 (2000) 074016 [hep-ph/9908323] [INSPIRE].

    ADS  Google Scholar 

  41. K. Kajantie, M. Laine, K. Rummukainen and M.E. Shaposhnikov, Generic rules for high temperature dimensional reduction and their application to the Standard Model, Nucl. Phys. B 458 (1996) 90 [hep-ph/9508379] [INSPIRE].

    Article  ADS  Google Scholar 

  42. E. Braaten and A. Nieto, Effective field theory approach to high temperature thermodynamics, Phys. Rev. D 51 (1995) 6990 [hep-ph/9501375] [INSPIRE].

    ADS  Google Scholar 

  43. J.O. Andersen, L.E. Leganger, M. Strickland and N. Su, Three-loop HTL QCD thermodynamics, JHEP 08 (2011) 053 [arXiv:1103.2528] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  44. A. Vuorinen and L.G. Yaffe, Z(3)-symmetric effective theory for SU(3) Yang-Mills theory at high temperature, Phys. Rev. D 74 (2006) 025011 [hep-ph/0604100] [INSPIRE].

    ADS  Google Scholar 

  45. P. de Forcrand, A. Kurkela and A. Vuorinen, Center-symmetric effective theory for high-temperature SU(2) Yang-Mills theory, Phys. Rev. D 77 (2008) 125014 [arXiv:0801.1566] [INSPIRE].

    ADS  Google Scholar 

  46. T. Zhang, T. Brauner, A. Kurkela and A. Vuorinen, Two-color QCD via dimensional reduction, JHEP 02 (2012) 139 [arXiv:1112.2983] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  47. K. Kajantie, M. Laine, K. Rummukainen and Y. Schröder, The pressure of hot QCD up to g 6 ln(1/g), Phys. Rev. D 67 (2003) 105008 [hep-ph/0211321] [INSPIRE].

    ADS  Google Scholar 

  48. F. Di Renzo, M. Laine, V. Miccio, Y. Schröder and C. Torrero, The leading non-perturbative coefficient in the weak-coupling expansion of hot QCD pressure, JHEP 07 (2006) 026 [hep-ph/0605042] [INSPIRE].

    Article  Google Scholar 

  49. A. Gynther, A. Kurkela and A. Vuorinen, The \( N_f^3 \) g 6 term in the pressure of hot QCD, Phys. Rev. D 80 (2009) 096002 [arXiv:0909.3521] [INSPIRE].

    ADS  Google Scholar 

  50. Y. Schröder, A fresh look on three-loop sum-integrals, JHEP 08 (2012) 095 [arXiv:1207.5666] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  51. M. Laine and Y. Schröder, Quark mass thresholds in QCD thermodynamics, Phys. Rev. D 73 (2006) 085009 [hep-ph/0603048] [INSPIRE].

    ADS  Google Scholar 

  52. A. Hart, M. Laine and O. Philipsen, Static correlation lengths in QCD at high temperatures and finite densities, Nucl. Phys. B 586 (2000) 443 [hep-ph/0004060] [INSPIRE].

    Article  ADS  Google Scholar 

  53. J. Möller and Y. Schröder, Three-loop matching coefficients for hot QCD: reduction and gauge independence, JHEP 08 (2012) 025 [arXiv:1207.1309] [INSPIRE].

    Article  Google Scholar 

  54. J.-P. Blaizot, E. Iancu and A. Rebhan, On the apparent convergence of perturbative QCD at high temperature, Phys. Rev. D 68 (2003) 025011 [hep-ph/0303045] [INSPIRE].

    ADS  Google Scholar 

  55. J.O. Andersen, E. Braaten, E. Petitgirard and M. Strickland, HTL perturbation theory to two loops, Phys. Rev. D 66 (2002) 085016 [hep-ph/0205085] [INSPIRE].

    ADS  Google Scholar 

  56. S. Borsányi et al., QCD equation of state at nonzero chemical potential: continuum results with physical quark masses at order μ 2, JHEP 08 (2012) 053 [arXiv:1204.6710] [INSPIRE].

    Article  ADS  Google Scholar 

  57. C. Allton et al., Thermodynamics of two flavor QCD to sixth order in quark chemical potential, Phys. Rev. D 71 (2005) 054508 [hep-lat/0501030] [INSPIRE].

    ADS  Google Scholar 

  58. R.V. Gavai, S. Gupta and P. Majumdar, Susceptibilities and screening masses in two flavor QCD, Phys. Rev. D 65 (2002) 054506 [hep-lat/0110032] [INSPIRE].

    ADS  Google Scholar 

  59. K. Kajantie, M. Laine, K. Rummukainen and M.E. Shaposhnikov, 3D SU(N) + adjoint Higgs theory and finite temperature QCD, Nucl. Phys. B 503 (1997) 357 [hep-ph/9704416] [INSPIRE].

    Article  ADS  Google Scholar 

  60. A. Bazavov et al., Determination of α s from the QCD static energy, Phys. Rev. D 86 (2012) 114031 [arXiv:1205.6155] [INSPIRE].

    ADS  Google Scholar 

  61. A. Bazavov et al., Strangeness at high temperatures: from hadrons to quarks, Phys. Rev. Lett. 111 (2013) 082301 [arXiv:1304.7220] [INSPIRE].

    Article  ADS  Google Scholar 

  62. N. Haque, J.O. Andersen, M.G. Mustafa, M. Strickland and N. Su, in preparation.

  63. F. Karsch, E. Laermann and A. Peikert, The pressure in two flavor, (2 + 1)-flavor and three flavor QCD, Phys. Lett. B 478 (2000) 447 [hep-lat/0002003] [INSPIRE].

    Article  ADS  Google Scholar 

  64. A. Peikert, QCD thermodynamics with 2 + 1 quark flavours in lattice simulations, Ph.D. dissertation, Bielefeld Germany May 2000.

  65. F. Karsch, E. Laermann and A. Peikert, Quark mass and flavor dependence of the QCD phase transition, Nucl. Phys. B 605 (2001) 579 [hep-lat/0012023] [INSPIRE].

    Article  ADS  Google Scholar 

  66. Mathematica notebook file, www.physik.uni-bielefeld.de/~vuorinen/DREoS.nb.

  67. E. Braaten and E. Petitgirard, Solution to the three loop Φ derivable approximation for massless scalar thermodynamics, Phys. Rev. D 65 (2002) 085039 [hep-ph/0107118] [INSPIRE].

    ADS  Google Scholar 

  68. I. Kondrashuk, S. Mogliacci and Y. Schröder, in preparation.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvain Mogliacci.

Additional information

ArXiv ePrint: 1307.8098

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mogliacci, S., Andersen, J.O., Strickland, M. et al. Equation of state of hot and dense QCD: resummed perturbation theory confronts lattice data. J. High Energ. Phys. 2013, 55 (2013). https://doi.org/10.1007/JHEP12(2013)055

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP12(2013)055

Keywords

Navigation