Skip to main content
Log in

Vacuum bubbles in the presence of a relativistic fluid

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

First order phase transitions are characterized by the nucleation and evolution of bubbles. The dynamics of cosmological vacuum bubbles, where the order parameter is independent of other degrees of freedom, are well known; more realistic phase transitions in which the order parameter interacts with the other constituents of the Universe is in its infancy. Here we present high-resolution lattice simulations that explore the dynamics of bubble evolution in which the order parameter is coupled to a relativistic fluid. We use a generic, toy potential, that can mimic physics from the GUT scale to the electroweak scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Kirzhnits, Weinberg model in the hot universe, JETP Lett. 15 (1972) 529 [Pisma Zh. Eksp. Teor. Fiz. 15 (1972) 745] [INSPIRE].

    ADS  Google Scholar 

  2. D. Kirzhnits and A.D. Linde, Symmetry behavior in gauge theories, Annals Phys. 101 (1976) 195 [INSPIRE].

    Article  ADS  Google Scholar 

  3. K. Kajantie, M. Laine, K. Rummukainen and M.E. Shaposhnikov, Is there a hot electroweak phase transition at m H larger or equal to m W ?, Phys. Rev. Lett. 77 (1996) 2887 [hep-ph/9605288] [INSPIRE].

    Article  ADS  Google Scholar 

  4. M. Laine and K. Rummukainen, A strong electroweak phase transition up to m H is about 105 GeV, Phys. Rev. Lett. 80 (1998) 5259 [hep-ph/9804255] [INSPIRE].

    Article  ADS  Google Scholar 

  5. M.S. Carena, M. Quirós and C. Wagner, Opening the window for electroweak baryogenesis, Phys. Lett. B 380 (1996) 81 [hep-ph/9603420] [INSPIRE].

    Article  ADS  Google Scholar 

  6. D. Delepine, J. Gerard, R. Gonzalez Felipe and J. Weyers, A light stop and electroweak baryogenesis, Phys. Lett. B 386 (1996) 183 [hep-ph/9604440] [INSPIRE].

    Article  ADS  Google Scholar 

  7. M. Laine and K. Rummukainen, The MSSM electroweak phase transition on the lattice, Nucl. Phys. B 535 (1998) 423 [hep-lat/9804019] [INSPIRE].

    Article  ADS  Google Scholar 

  8. C. Grojean, G. Servant and J.D. Wells, First-order electroweak phase transition in the Standard Model with a low cutoff, Phys. Rev. D 71 (2005) 036001 [hep-ph/0407019] [INSPIRE].

    ADS  Google Scholar 

  9. S. Huber and M. Schmidt, Electroweak baryogenesis: concrete in a SUSY model with a gauge singlet, Nucl. Phys. B 606 (2001) 183 [hep-ph/0003122] [INSPIRE].

    Article  ADS  Google Scholar 

  10. S.J. Huber, T. Konstandin, T. Prokopec and M.G. Schmidt, Electroweak phase transition and baryogenesis in the NMSSM, Nucl. Phys. B 757 (2006) 172 [hep-ph/0606298] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  11. M. Laine, G. Nardini and K. Rummukainen, Lattice study of an electroweak phase transition at m h  ~ 126 GeV, JCAP 01 (2013) 011 [arXiv:1211.7344] [INSPIRE].

    Article  ADS  Google Scholar 

  12. M. Carena, G. Nardini, M. Quirós and C. Wagner, The baryogenesis window in the MSSM, Nucl. Phys. B 812 (2009) 243 [arXiv:0809.3760] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  13. M. Carena, G. Nardini, M. Quirós and C.E. Wagner, MSSM electroweak baryogenesis and LHC data, JHEP 02 (2013) 001 [arXiv:1207.6330] [INSPIRE].

    Article  ADS  Google Scholar 

  14. S. Hawking, I. Moss and J. Stewart, Bubble collisions in the very early universe, Phys. Rev. D 26 (1982) 2681 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  15. A. Kosowsky, M.S. Turner and R. Watkins, Gravitational radiation from colliding vacuum bubbles, Phys. Rev. D 45 (1992) 4514 [INSPIRE].

    ADS  Google Scholar 

  16. M.S. Turner, E.J. Weinberg and L.M. Widrow, Bubble nucleation in first order inflation and other cosmological phase transitions, Phys. Rev. D 46 (1992) 2384 [INSPIRE].

    ADS  Google Scholar 

  17. A. Kosowsky, M.S. Turner and R. Watkins, Gravitational waves from first order cosmological phase transitions, Phys. Rev. Lett. 69 (1992) 2026 [INSPIRE].

    Article  ADS  Google Scholar 

  18. A. Kosowsky and M.S. Turner, Gravitational radiation from colliding vacuum bubbles: envelope approximation to many bubble collisions, Phys. Rev. D 47 (1993) 4372 [astro-ph/9211004] [INSPIRE].

    ADS  Google Scholar 

  19. J.T. Giblin, L. Hui, E.A. Lim and I.-S. Yang, How to run through walls: dynamics of bubble and soliton collisions, Phys. Rev. D 82 (2010) 045019 [arXiv:1005.3493] [INSPIRE].

    ADS  Google Scholar 

  20. R. Easther, J.T. Giblin, L. Hui and E.A. Lim, A new mechanism for bubble nucleation: classical transitions, Phys. Rev. D 80 (2009) 123519 [arXiv:0907.3234] [INSPIRE].

    ADS  Google Scholar 

  21. A. Kosowsky, A. Mack and T. Kahniashvili, Gravitational radiation from cosmological turbulence, Phys. Rev. D 66 (2002) 024030 [astro-ph/0111483] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  22. G. Gogoberidze, T. Kahniashvili and A. Kosowsky, The spectrum of gravitational radiation from primordial turbulence, Phys. Rev. D 76 (2007) 083002 [arXiv:0705.1733] [INSPIRE].

    ADS  Google Scholar 

  23. C. Caprini and R. Durrer, Gravitational waves from stochastic relativistic sources: primordial turbulence and magnetic fields, Phys. Rev. D 74 (2006) 063521 [astro-ph/0603476] [INSPIRE].

    ADS  Google Scholar 

  24. C. Caprini, R. Durrer and G. Servant, The stochastic gravitational wave background from turbulence and magnetic fields generated by a first-order phase transition, JCAP 12 (2009) 024 [arXiv:0909.0622] [INSPIRE].

    Article  ADS  Google Scholar 

  25. S.J. Huber and M. Sopena, An efficient approach to electroweak bubble velocities, arXiv:1302.1044 [INSPIRE].

  26. M. Hindmarsh, S.J. Huber, K. Rummukainen and D.J. Weir, Gravitational waves from the sound of a first order phase transition, arXiv:1304.2433 [INSPIRE].

  27. G.V. Dunne and H. Min, Beyond the thin-wall approximation: precise numerical computation of prefactors in false vacuum decay, Phys. Rev. D 72 (2005) 125004 [hep-th/0511156] [INSPIRE].

    ADS  Google Scholar 

  28. H.L. Child and J.T. Giblin, Gravitational radiation from first-order phase transitions, JCAP 10 (2012) 001 [arXiv:1207.6408] [INSPIRE].

    Article  ADS  Google Scholar 

  29. M. Kamionkowski, A. Kosowsky and M.S. Turner, Gravitational radiation from first order phase transitions, Phys. Rev. D 49 (1994) 2837 [astro-ph/9310044] [INSPIRE].

    ADS  Google Scholar 

  30. J. Ignatius, K. Kajantie, H. Kurki-Suonio and M. Laine, The growth of bubbles in cosmological phase transitions, Phys. Rev. D 49 (1994) 3854 [astro-ph/9309059] [INSPIRE].

    ADS  Google Scholar 

  31. H. Kurki-Suonio and M. Laine, On bubble growth and droplet decay in cosmological phase transitions, Phys. Rev. D 54 (1996) 7163 [hep-ph/9512202] [INSPIRE].

    ADS  Google Scholar 

  32. S.R. Coleman, The fate of the false vacuum. 1. Semiclassical theory, Phys. Rev. D 15 (1977) 2929 [Erratum ibid. D 16 (1977) 1248] [INSPIRE].

    ADS  Google Scholar 

  33. S.R. Coleman and F. De Luccia, Gravitational effects on and of vacuum decay, Phys. Rev. D 21 (1980) 3305 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  34. B.F. Schutz, Perfect fluids in general relativity: velocity potentials and a variational principle, Phys. Rev. D 2 (1970) 2762 [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  35. OpenMP Architecture Review Board collaboration, OpenMP application program interface, version 3.0, May 2008.

  36. HDF group collaboration, Hierarchical Data Format version 5, http://www.hdfgroup.org/HDF5, (2000)-(2013).

  37. R. Easther, J.T. Giblin and E.A. Lim, Gravitational waves from the end of inflation: computational strategies, Phys. Rev. D 77 (2008) 103519 [arXiv:0712.2991] [INSPIRE].

    ADS  Google Scholar 

  38. S. Dubovsky, L. Hui, A. Nicolis and D.T. Son, Effective field theory for hydrodynamics: thermodynamics and the derivative expansion, Phys. Rev. D 85 (2012) 085029 [arXiv:1107.0731] [INSPIRE].

    ADS  Google Scholar 

  39. S. Dubovsky, L. Hui and A. Nicolis, Effective field theory for hydrodynamics: Wess-Zumino term and anomalies in two spacetime dimensions, arXiv:1107.0732 [INSPIRE].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James B. Mertens.

Additional information

ArXiv ePrint: 1310.2948

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giblin, J.T., Mertens, J.B. Vacuum bubbles in the presence of a relativistic fluid. J. High Energ. Phys. 2013, 42 (2013). https://doi.org/10.1007/JHEP12(2013)042

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP12(2013)042

Keywords

Navigation