Skip to main content
Log in

A closer look at gaugino masses in pure gravity mediation model/minimal split SUSY model

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We take a closer look at the gaugino masses in the context of pure gravity mediation models/minimal split SUSY models. We see that the gaugino mass spectrum has a richer structure in the presence of vector-like matter fields even when they couple to the supersymmetry breaking sector only through Planck suppressed operators. For example, the gluino mass can be much lighter than in anomaly mediation, enhancing the detectability of the gluino at the LHC experiments. The rich gaugino spectrum also allows new possibilities for dark matter scenarios such as the bino-wino co-annihilation, binogluino co-annihilation, or even wino-gluino co-annihilation scenarios, which affects future collider experiments as well as dark matter search experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Davier, L. Maiani, C.A. Savoy and J. Scherk, Vector bosons and Higgs bosons in the Weinberg-Salam theory of weak and electromagnetic interactions, Proceedings: Summer School on Particle Physics, 3-7 Sep 1979, Gif-sur-Yvette, Paris France.

  2. M. Veltman, The Infrared - Ultraviolet Connection, Acta Phys. Polon. B 12 (1981) 437 [INSPIRE].

    Google Scholar 

  3. E. Witten, Dynamical Breaking of Supersymmetry, Nucl. Phys. B 188 (1981) 513 [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  4. R.K. Kaul, Gauge Hierarchy in a Supersymmetric Model, Phys. Lett. B 109 (1982) 19 [INSPIRE].

    Article  ADS  Google Scholar 

  5. G.F. Giudice, M.A. Luty, H. Murayama and R. Rattazzi, Gaugino mass without singlets, JHEP 12 (1998) 027 [hep-ph/9810442] [INSPIRE].

    Article  ADS  Google Scholar 

  6. J.D. Wells, Implications of supersymmetry breaking with a little hierarchy between gauginos and scalars, hep-ph/0306127 [INSPIRE].

  7. J.D. Wells, PeV-scale supersymmetry, Phys. Rev. D 71 (2005) 015013 [hep-ph/0411041] [INSPIRE].

    ADS  Google Scholar 

  8. G. Coughlan, W. Fischler, E.W. Kolb, S. Raby and G.G. Ross, Cosmological Problems for the Polonyi Potential, Phys. Lett. B 131 (1983) 59 [INSPIRE].

    Article  ADS  Google Scholar 

  9. M. Ibe, Y. Shinbara and T. Yanagida, The Polonyi Problem and Upper bound on Inflation Scale in Supergravity, Phys. Lett. B 639 (2006) 534 [hep-ph/0605252] [INSPIRE].

    Article  ADS  Google Scholar 

  10. H. Pagels and J.R. Primack, Supersymmetry, Cosmology and New TeV Physics, Phys. Rev. Lett. 48 (1982) 223 [INSPIRE].

    Article  ADS  Google Scholar 

  11. S. Weinberg, Cosmological Constraints on the Scale of Supersymmetry Breaking, Phys. Rev. Lett. 48 (1982) 1303 [INSPIRE].

    Article  ADS  Google Scholar 

  12. M.Y. Khlopov and A.D. Linde, Is It Easy to Save the Gravitino?, Phys. Lett. B 138 (1984) 265 [INSPIRE].

    Article  ADS  Google Scholar 

  13. M. Kawasaki, K. Kohri and T. Moroi, Big-Bang nucleosynthesis and hadronic decay of long-lived massive particles, Phys. Rev. D 71 (2005) 083502 [astro-ph/0408426] [INSPIRE].

    ADS  Google Scholar 

  14. K. Jedamzik, Big bang nucleosynthesis constraints on hadronically and electromagnetically decaying relic neutral particles, Phys. Rev. D 74 (2006) 103509 [hep-ph/0604251] [INSPIRE].

    ADS  Google Scholar 

  15. M. Kawasaki, K. Kohri, T. Moroi and A. Yotsuyanagi, Big-Bang Nucleosynthesis and Gravitino, Phys. Rev. D 78 (2008) 065011 [arXiv:0804.3745] [INSPIRE].

    ADS  Google Scholar 

  16. M. Fukugita and T. Yanagida, Baryogenesis Without Grand Unification, Phys. Lett. B 174 (1986) 45 [INSPIRE].

    Article  ADS  Google Scholar 

  17. W. Buchmüller, P. Di Bari and M. Plümacher, Leptogenesis for pedestrians, Annals Phys. 315 (2005) 305 [hep-ph/0401240] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  18. W. Buchmüller, R. Peccei and T. Yanagida, Leptogenesis as the origin of matter, Ann. Rev. Nucl. Part. Sci. 55 (2005) 311 [hep-ph/0502169] [INSPIRE].

    Article  ADS  Google Scholar 

  19. S. Davidson, E. Nardi and Y. Nir, Leptogenesis, Phys. Rept. 466 (2008) 105 [arXiv:0802.2962] [INSPIRE].

    Article  ADS  Google Scholar 

  20. S. Weinberg, Anthropic Bound on the Cosmological Constant, Phys. Rev. Lett. 59 (1987) 2607 [INSPIRE].

    Article  ADS  Google Scholar 

  21. R. Bousso and J. Polchinski, Quantization of four form fluxes and dynamical neutralization of the cosmological constant, JHEP 06 (2000) 006 [hep-th/0004134] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. S. Kachru, R. Kallosh, A.D. Linde and S.P. Trivedi, de Sitter vacua in string theory, Phys. Rev. D 68 (2003) 046005 [hep-th/0301240] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  23. L. Susskind, The Anthropic landscape of string theory, hep-th/0302219 [INSPIRE].

  24. F. Denef and M.R. Douglas, Distributions of flux vacua, JHEP 05 (2004) 072 [hep-th/0404116] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  25. V. Agrawal, S.M. Barr, J.F. Donoghue and D. Seckel, Anthropic considerations in multiple domain theories and the scale of electroweak symmetry breaking, Phys. Rev. Lett. 80 (1998) 1822 [hep-ph/9801253] [INSPIRE].

    Article  ADS  Google Scholar 

  26. T.E. Jeltema and M. Sher, The Triple alpha process and the anthropically allowed values of the weak scale, Phys. Rev. D 61 (2000) 017301 [hep-ph/9905494] [INSPIRE].

  27. N. Arkani-Hamed and S. Dimopoulos, Supersymmetric unification without low energy supersymmetry and signatures for fine-tuning at the LHC, JHEP 06 (2005) 073 [hep-th/0405159] [INSPIRE].

    Article  ADS  Google Scholar 

  28. G. Giudice and A. Romanino, Split supersymmetry, Nucl. Phys. B 699 (2004) 65 [Erratum ibid. B 706 (2005) 65-89] [hep-ph/0406088] [INSPIRE].

  29. N. Arkani-Hamed, S. Dimopoulos, G. Giudice and A. Romanino, Aspects of split supersymmetry, Nucl. Phys. B 709 (2005) 3 [hep-ph/0409232] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. M. Ibe, T. Moroi and T. Yanagida, Possible Signals of Wino LSP at the Large Hadron Collider, Phys. Lett. B 644 (2007) 355 [hep-ph/0610277] [INSPIRE].

    Article  ADS  Google Scholar 

  31. K. Inoue, M. Kawasaki, M. Yamaguchi and T. Yanagida, Vanishing squark and slepton masses in a class of supergravity models, Phys. Rev. D 45 (1992) 328 [INSPIRE].

    ADS  Google Scholar 

  32. J. Casas and C. Muñoz, A Natural solution to the mu problem, Phys. Lett. B 306 (1993) 288 [hep-ph/9302227] [INSPIRE].

    Article  ADS  Google Scholar 

  33. G. Giudice and A. Masiero, A Natural Solution to the mu Problem in Supergravity Theories, Phys. Lett. B 206 (1988) 480 [INSPIRE].

    Article  ADS  Google Scholar 

  34. M. Ibe and T.T. Yanagida, The Lightest Higgs Boson Mass in Pure Gravity Mediation Model, Phys. Lett. B 709 (2012) 374 [arXiv:1112.2462] [INSPIRE].

    Article  ADS  Google Scholar 

  35. M. Ibe, S. Matsumoto and T.T. Yanagida, Pure Gravity Mediation with m 3/2 = 10-100TeV, Phys. Rev. D 85 (2012) 095011 [arXiv:1202.2253] [INSPIRE].

    ADS  Google Scholar 

  36. N. Arkani-Hamed, IFT Inaugural Conference (2011), http://www.ift.uam.es/workshops/Xmas11/?q=node/2.

  37. N. Arkani-Hamed, A. Gupta, D.E. Kaplan, N. Weiner and T. Zorawski, Simply Unnatural Supersymmetry, arXiv:1212.6971 [INSPIRE].

  38. L.J. Hall and Y. Nomura, Spread Supersymmetry, JHEP 01 (2012) 082 [arXiv:1111.4519] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. A. Arvanitaki, N. Craig, S. Dimopoulos and G. Villadoro, Mini-Split, JHEP 02 (2013) 126 [arXiv:1210.0555] [INSPIRE].

    Article  ADS  Google Scholar 

  40. H.P. Nilles, Supersymmetry, Supergravity and Particle Physics, Phys. Rept. 110 (1984) 1 [INSPIRE].

    Article  ADS  Google Scholar 

  41. M. Dine and D. MacIntire, Supersymmetry, naturalness and dynamical supersymmetry breaking, Phys. Rev. D 46 (1992) 2594 [hep-ph/9205227] [INSPIRE].

    ADS  Google Scholar 

  42. L. Randall and R. Sundrum, Out of this world supersymmetry breaking, Nucl. Phys. B 557 (1999) 79 [hep-th/9810155] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

    ADS  Google Scholar 

  44. CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

    ADS  Google Scholar 

  45. Y. Okada, M. Yamaguchi and T. Yanagida, Renormalization group analysis on the Higgs mass in the softly broken supersymmetric standard model, Phys. Lett. B 262 (1991) 54 [INSPIRE].

    Article  ADS  Google Scholar 

  46. Y. Okada, M. Yamaguchi and T. Yanagida, Upper bound of the lightest Higgs boson mass in the minimal supersymmetric standard model, Prog. Theor. Phys. 85 (1991) 1 [INSPIRE].

    Article  ADS  Google Scholar 

  47. J.R. Ellis, G. Ridolfi and F. Zwirner, Radiative corrections to the masses of supersymmetric Higgs bosons, Phys. Lett. B 257 (1991) 83 [INSPIRE].

    Article  ADS  Google Scholar 

  48. H.E. Haber and R. Hempfling, Can the mass of the lightest Higgs boson of the minimal supersymmetric model be larger than m(Z)?, Phys. Rev. Lett. 66 (1991) 1815 [INSPIRE].

    Article  ADS  Google Scholar 

  49. D.S. Alves, E. Izaguirre and J.G. Wacker, Higgs, Binos and Gluinos: Split SUSY Within Reach, arXiv:1108.3390 [INSPIRE].

  50. G.F. Giudice and A. Strumia, Probing High-Scale and Split Supersymmetry with Higgs Mass Measurements, Nucl. Phys. B 858 (2012) 63 [arXiv:1108.6077] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  51. R. Sato, S. Shirai and K. Tobioka, Gluino Decay as a Probe of High Scale Supersymmetry Breaking, JHEP 11 (2012) 041 [arXiv:1207.3608] [INSPIRE].

    Article  ADS  Google Scholar 

  52. B. Bhattacherjee, B. Feldstein, M. Ibe, S. Matsumoto and T.T. Yanagida, Pure Gravity Mediation of Supersymmetry Breaking at the LHC, Phys. Rev. D 87 (2013) 015028 [arXiv:1207.5453] [INSPIRE].

    ADS  Google Scholar 

  53. L.J. Hall, Y. Nomura and S. Shirai, Spread Supersymmetry with Wino LSP: Gluino and Dark Matter Signals, JHEP 01 (2013) 036 [arXiv:1210.2395] [INSPIRE].

    Article  ADS  Google Scholar 

  54. M. Ibe, S. Matsumoto and R. Sato, Mass Splitting between Charged and Neutral Winos at Two-Loop Level, Phys. Lett. B 721 (2013) 252 [arXiv:1212.5989] [INSPIRE].

    Article  ADS  Google Scholar 

  55. R. Sato, S. Shirai and K. Tobioka, Flavor of Gluino Decay in High-Scale Supersymmetry, JHEP 10 (2013) 157 [arXiv:1307.7144] [INSPIRE].

    Article  ADS  Google Scholar 

  56. J. Hisano, T. Kuwahara and N. Nagata, Grand Unification in High-scale Supersymmetry, Phys. Lett. B 723 (2013) 324 [arXiv:1304.0343] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  57. J. Hisano, D. Kobayashi, T. Kuwahara and N. Nagata, Decoupling Can Revive Minimal Supersymmetric SU(5), JHEP 07 (2013) 038 [arXiv:1304.3651] [INSPIRE].

    Article  ADS  Google Scholar 

  58. W. Altmannshofer, R. Harnik and J. Zupan, Low Energy Probes of PeV Scale Sfermions, arXiv:1308.3653 [INSPIRE].

  59. K. Fuyuto, J. Hisano, N. Nagata and K. Tsumura, QCD Corrections to Quark (Chromo)Electric Dipole Moments in High-scale Supersymmetry, arXiv:1308.6493 [INSPIRE].

  60. A. Linde, Y. Mambrini and K.A. Olive, Supersymmetry Breaking due to Moduli Stabilization in String Theory, Phys. Rev. D 85 (2012) 066005 [arXiv:1111.1465] [INSPIRE].

    ADS  Google Scholar 

  61. B.S. Acharya, G. Kane and P. Kumar, Compactified String Theories - Generic Predictions for Particle Physics, Int. J. Mod. Phys. A 27 (2012) 1230012 [arXiv:1204.2795] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  62. J.L. Evans, M. Ibe, K.A. Olive and T.T. Yanagida, Universality in Pure Gravity Mediation, Eur. Phys. J. C 73 (2013) 2468 [arXiv:1302.5346] [INSPIRE].

    Article  ADS  Google Scholar 

  63. J.L. Evans, K.A. Olive, M. Ibe and T.T. Yanagida, Non-Universalities in Pure Gravity Mediation, arXiv:1305.7461 [INSPIRE].

  64. K. Nakayama and F. Takahashi, PeV-scale Supersymmetry from New Inflation, JCAP 05 (2012) 035 [arXiv:1203.0323] [INSPIRE].

    Article  ADS  Google Scholar 

  65. B. Feldstein and T.T. Yanagida, Why is the Supersymmetry Breaking Scale Unnaturally High?, Phys. Lett. B 720 (2013) 166 [arXiv:1210.7578] [INSPIRE].

    Article  ADS  Google Scholar 

  66. K. Harigaya, M. Kawasaki and T.T. Yanagida, High Scale SUSY Breaking From Topological Inflation, Phys. Lett. B 719 (2013) 126 [arXiv:1211.1770] [INSPIRE].

    Article  ADS  Google Scholar 

  67. W. Buchmüller, V. Domcke, K. Kamada and K. Schmitz, A Minimal Supersymmetric Model of Particle Physics and the Early Universe, arXiv:1309.7788 [INSPIRE].

  68. A.E. Nelson and N.J. Weiner, Extended anomaly mediation and new physics at 10-TeV, hep-ph/0210288 [INSPIRE].

  69. K. Hsieh and M.A. Luty, Mixed gauge and anomaly mediation from new physics at 10-TeV, JHEP 06 (2007) 062 [hep-ph/0604256] [INSPIRE].

    Article  ADS  Google Scholar 

  70. A. Gupta, D.E. Kaplan and T. Zorawski, Gaugomaly Mediation Revisited, arXiv:1212.6969 [INSPIRE].

  71. K. Nakayama and T.T. Yanagida, Anomaly mediation deformed by axion, Phys. Lett. B 722 (2013) 107 [arXiv:1302.3332] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  72. T. Moroi and L. Randall, Wino cold dark matter from anomaly mediated SUSY breaking, Nucl. Phys. B 570 (2000) 455 [hep-ph/9906527] [INSPIRE].

    Article  ADS  Google Scholar 

  73. T. Gherghetta, G.F. Giudice and J.D. Wells, Phenomenological consequences of supersymmetry with anomaly induced masses, Nucl. Phys. B 559 (1999) 27 [hep-ph/9904378] [INSPIRE].

    Article  ADS  Google Scholar 

  74. J. Hisano, S. Matsumoto and M.M. Nojiri, Explosive dark matter annihilation, Phys. Rev. Lett. 92 (2004) 031303 [hep-ph/0307216] [INSPIRE].

    Article  ADS  Google Scholar 

  75. M. Ibe, R. Kitano, H. Murayama and T. Yanagida, Viable supersymmetry and leptogenesis with anomaly mediation, Phys. Rev. D 70 (2004) 075012 [hep-ph/0403198] [INSPIRE].

    ADS  Google Scholar 

  76. F. D’Eramo, J. Thaler and Z. Thomas, Anomaly Mediation from Unbroken Supergravity, JHEP 09 (2013) 125 [arXiv:1307.3251] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  77. A. Pomarol and R. Rattazzi, Sparticle masses from the superconformal anomaly, JHEP 05 (1999) 013 [hep-ph/9903448] [INSPIRE].

    Article  ADS  Google Scholar 

  78. E. Poppitz and S.P. Trivedi, Some remarks on gauge mediated supersymmetry breaking, Phys. Lett. B 401 (1997) 38 [hep-ph/9703246] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  79. F. Gabbiani, E. Gabrielli, A. Masiero and L. Silvestrini, A Complete analysis of FCNC and CP constraints in general SUSY extensions of the standard model, Nucl. Phys. B 477 (1996) 321 [hep-ph/9604387] [INSPIRE].

    Article  ADS  Google Scholar 

  80. N. Arkani-Hamed, S. Dimopoulos, G. Giudice and A. Romanino, Aspects of split supersymmetry, Nucl. Phys. B 709 (2005) 3 [hep-ph/0409232] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  81. Planck collaboration, P. Ade et al., Planck 2013 results. XVI. Cosmological parameters, arXiv:1303.5076 [INSPIRE].

  82. ATLAS collaboration, Search for charginos nearly mass-degenerate with the lightest neutralino based on a disappearing-track signature in pp collisions at \( \sqrt{s} \) = 8 TeV with the ATLAS detector, ATLAS-CONF-2013-069 (2013).

  83. ATLAS collaboration, Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum and 20.3 fb −1 of \( \sqrt{s} \) = 8 TeV proton-proton collision data, ATLAS-CONF-2013-047 (2013).

  84. G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs3.1: a program for calculating dark matter observables, arXiv:1305.0237 [INSPIRE].

  85. J. Hisano, S. Matsumoto, M. Nagai, O. Saito and M. Senami, Non-perturbative effect on thermal relic abundance of dark matter, Phys. Lett. B 646 (2007) 34 [hep-ph/0610249] [INSPIRE].

    Article  ADS  Google Scholar 

  86. K. Harigaya, K. Kaneta and S. Matsumoto, in preperation.

  87. A. Birkedal-Hansen and B.D. Nelson, The Role of Wino content in neutralino dark matter, Phys. Rev. D 64 (2001) 015008 [hep-ph/0102075] [INSPIRE].

    ADS  Google Scholar 

  88. S. Profumo and C. Yaguna, Gluino coannihilations and heavy bino dark matter, Phys. Rev. D 69 (2004) 115009 [hep-ph/0402208] [INSPIRE].

    ADS  Google Scholar 

  89. T. Cohen, M. Lisanti, A. Pierce and T.R. Slatyer, Wino Dark Matter Under Siege, JCAP 10 (2013) 061 [arXiv:1307.4082] [INSPIRE].

    Article  ADS  Google Scholar 

  90. J. Fan and M. Reece, In Wino Veritas? Indirect Searches Shed Light on Neutralino Dark Matter, JHEP 10 (2013) 124 [arXiv:1307.4400] [INSPIRE].

    Article  ADS  Google Scholar 

  91. F. Nesti and P. Salucci, The Dark Matter halo of the Milky Way, AD 2013, JCAP 07 (2013) 016 [arXiv:1304.5127] [INSPIRE].

    Article  ADS  Google Scholar 

  92. Fermi-LAT collaboration, M. Ackermann et al., Dark Matter Constraints from Observations of 25 Milky Way Satellite Galaxies with the Fermi Large Area Telescope, arXiv:1310.0828 [INSPIRE].

  93. J. Alwall, K. Hiramatsu, M.M. Nojiri and Y. Shimizu, Novel reconstruction technique for New Physics processes with initial state radiation, Phys. Rev. Lett. 103 (2009) 151802 [arXiv:0905.1201] [INSPIRE].

    Article  ADS  Google Scholar 

  94. B. Bhattacherjee, A. Choudhury, K. Ghosh and S. Poddar, Compressed SUSY at 14 TeV LHC, arXiv:1308.1526 [INSPIRE].

  95. M. Ibe, S. Matsumoto, S. Shirai and T.T. Yanagida, AMS-02 Positrons from Decaying Wino in the Pure Gravity Mediation Model, JHEP 07 (2013) 063 [arXiv:1305.0084] [INSPIRE].

    Article  ADS  Google Scholar 

  96. PAMELA collaboration, O. Adriani et al., An anomalous positron abundance in cosmic rays with energies 1.5-100 GeV, Nature 458 (2009) 607 [arXiv:0810.4995] [INSPIRE].

    Article  Google Scholar 

  97. Fermi LAT collaboration, M. Ackermann et al., Measurement of separate cosmic-ray electron and positron spectra with the Fermi Large Area Telescope, Phys. Rev. Lett. 108 (2012) 011103 [arXiv:1109.0521] [INSPIRE].

    Article  Google Scholar 

  98. AMS collaboration, M. Aguilar et al., First Result from the Alpha Magnetic Spectrometer on the International Space Station: Precision Measurement of the Positron Fraction in Primary Cosmic Rays of 0.5-350 GeV, Phys. Rev. Lett. 110 (2013) 141102 [INSPIRE].

    Article  ADS  Google Scholar 

  99. J.E. Kim, Weak Interaction Singlet and Strong CP Invariance, Phys. Rev. Lett. 43 (1979) 103 [INSPIRE].

    Article  ADS  Google Scholar 

  100. M.A. Shifman, A. Vainshtein and V.I. Zakharov, Can Confinement Ensure Natural CP Invariance of Strong Interactions?, Nucl. Phys. B 166 (1980) 493 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  101. R. Peccei and H.R. Quinn, CP Conservation in the Presence of Instantons, Phys. Rev. Lett. 38 (1977) 1440 [INSPIRE].

    Article  ADS  Google Scholar 

  102. R. Peccei and H.R. Quinn, Constraints Imposed by CP Conservation in the Presence of Instantons, Phys. Rev. D 16 (1977) 1791 [INSPIRE].

    ADS  Google Scholar 

  103. S. Weinberg, A New Light Boson?, Phys. Rev. Lett. 40 (1978) 223 [INSPIRE].

    Article  ADS  Google Scholar 

  104. F. Wilczek, Problem of Strong p and t Invariance in the Presence of Instantons, Phys. Rev. Lett. 40 (1978) 279 [INSPIRE].

    Article  ADS  Google Scholar 

  105. K. Harigaya, M. Ibe, K. Schmitz and T.T. Yanagida, The Peccei-Quinn Symmetry from a Gauged Discrete R Symmetry, Phys. Rev. D 88 (2013) 075022 [arXiv:1308.1227] [INSPIRE].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keisuke Harigaya.

Additional information

ArXiv ePrint: 1310.0643

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harigaya, K., Ibe, M. & Yanagida, T.T. A closer look at gaugino masses in pure gravity mediation model/minimal split SUSY model. J. High Energ. Phys. 2013, 16 (2013). https://doi.org/10.1007/JHEP12(2013)016

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP12(2013)016

Keywords

Navigation