Skip to main content
Log in

Entropy bounds in terms of the w parameter

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

In a pair of recent articles [PRL 105 (2010) 041302; JHEP 1103 (2011) 056] two of the current authors have developed an entropy bound for equilibrium uncollapsed matter using only classical general relativity, basic thermodynamics, and the Unruh effect. An odd feature of that bound, , was that the proportionality constant, \( \frac{1}{2} \), was weaker than that expected from black hole thermodynamics, \( \frac{1}{4} \). In the current article we strengthen the previous results by obtaining a bound involving the (suitably averaged) w parameter. Simple causality arguments restrict this averaged 〈w〉 parameter to be ≤ 1. When equality holds, the entropy bound saturates at the value expected based on black hole thermodynamics. We also add some clarifying comments regarding the (net) positivity of the chemical potential. Overall, we find that even in the absence of any black hole region, we can nevertheless get arbitrarily close to the Bekenstein entropy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Abreu and M. Visser, Tolman mass, generalized surface gravity and entropy bounds, Phys. Rev. Lett. 105 (2010) 041302 [arXiv:1005.1132] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  2. G. Abreu and M. Visser, Entropy bounds for uncollapsed rotating bodies, JHEP 03 (2011) 056 [arXiv:1012.2867] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  3. G. Abreu and M. Visser, Entropy bounds for uncollapsed matter, J. Phys. Conf. Ser. 314 (2011) 012035 [arXiv:1011.4538] [INSPIRE].

    Article  ADS  Google Scholar 

  4. G. Abreu and M. Visser, Some generalizations of the Raychaudhuri equation, Phys. Rev. D 83 (2011) 104016 [arXiv:1012.4806] [INSPIRE].

    ADS  Google Scholar 

  5. G. Abreu, Kodama time, entropy bounds, the Raychaudhuri equation, and the quantum interest conjecture, Ph.D. thesis, Victoria University of Wellington, Wellington New Zealand (2011).

  6. S. Kolekar and T. Padmanabhan, Ideal gas in a strong gravitational field: area dependence of entropy, Phys. Rev. D 83 (2011) 064034 [arXiv:1012.5421] [INSPIRE].

    ADS  Google Scholar 

  7. J.M. Bardeen, B. Carter and S. Hawking, The four laws of black hole mechanics, Commun. Math. Phys. 31 (1973) 161 [INSPIRE].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  8. J.D. Bekenstein, Generalized second law of thermodynamics in black hole physics, Phys. Rev. D 9 (1974) 3292 [INSPIRE].

    ADS  Google Scholar 

  9. S. Hawking, Black hole explosions, Nature 248 (1974) 30 [INSPIRE].

    Article  ADS  Google Scholar 

  10. R.C. Tolman and P. Ehrenfest, Temperature equilibrium in a static gravitational field, Phys. Rev. 36 (1930) 1791 .

    Article  ADS  Google Scholar 

  11. R.C. Tolman, Thermal equilibrium in a general gravitational field, Proc. Nat. Acad. Sci. 21 (1935) 321.

    Article  MATH  ADS  Google Scholar 

  12. O. Klein, On the thermodynamical equilibrium of fluids in gravitational fields, Rev. Mod. Phys. 21 (1949) 531 .

    Article  MATH  ADS  Google Scholar 

  13. R.C. Tolman, On the use of the energy-momentum principle in general relativity, Phys. Rev. 35 (1930) 875 [http://prola.aps.org/pdf/PR/v35/i8/p875_1].

    Google Scholar 

  14. R.C. Tolman, Relativity, thermodynamics, and cosmology, Oxford University Press, Oxford U.K. (1934).

    Google Scholar 

  15. M. Visser and N. Yunes, Power laws, scale invariance and generalized Frobenius series: applications to Newtonian and TOV stars near criticality, Int. J. Mod. Phys. A 18 (2003) 3433 [gr-qc/0211001]. [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  16. P.O. Mazur and E. Mottola, Gravitational condensate stars: an alternative to black holes, gr-qc/0109035 [INSPIRE].

  17. P.O. Mazur and E. Mottola, Gravitational vacuum condensate stars, Proc. Nat. Acad. Sci. 101 (2004) 9545 [gr-qc/0407075]. [INSPIRE].

    Article  ADS  Google Scholar 

  18. M. Visser and D.L. Wiltshire, Stable gravastars: an alternative to black holes?, Class. Quant. Grav. 21 (2004) 1135 [gr-qc/0310107]. [INSPIRE].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  19. C. Cattoen, T. Faber and M. Visser, Gravastars must have anisotropic pressures, Class. Quant. Grav. 22 (2005) 4189 [gr-qc/0505137]. [INSPIRE].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  20. R.D. Sorkin, R.M. Wald and Z.J. Zhang, Entropy of selfgravitating radiation, Gen. Rel. Grav. 13 (1981) 1127 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  21. S.D. Hsu and D. Reeb, Black hole entropy, curved space and monsters, Phys. Lett. B 658 (2008) 244 [arXiv:0706.3239] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  22. S.D. Hsu and D. Reeb, Monsters, black holes and the statistical mechanics of gravity, Mod. Phys. Lett. A 24 (2009) 1875 [arXiv:0908.1265] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  23. C. Barceló, S. Liberati, S. Sonego and M. Visser, Fate of gravitational collapse in semiclassical gravity, Phys. Rev. D 77 (2008) 044032 [arXiv:0712.1130] [INSPIRE].

    ADS  Google Scholar 

  24. C. Barceló, S. Liberati, S. Sonego and M. Visser, Revisiting the semiclassical gravity scenario for gravitational collapse, AIP Conf. Proc. 1122 (2009) 99 [arXiv:0909.4157]. [INSPIRE].

    Article  ADS  Google Scholar 

  25. C. Barceló, S. Liberati, S. Sonego and M. Visser, Black stars, not holes, Sci. Am. (2009).

  26. M. Visser, C. Barceló, S. Liberati and S. Sonego, Small, dark and heavy: but is it a black hole?, arXiv:0902.0346 [INSPIRE].

  27. C. Barceló, S. Liberati, S. Sonego and M. Visser, Minimal conditions for the existence of a Hawking-like flux, Phys. Rev. D 83 (2011) 041501 [arXiv:1011.5593] [INSPIRE].

    ADS  Google Scholar 

  28. C. Barceló, S. Liberati, S. Sonego and M. Visser, Hawking-like radiation from evolving black holes and compact horizonless objects, JHEP 02 (2011) 003 [arXiv:1011.5911]. [INSPIRE].

    ADS  Google Scholar 

  29. J.P. Lemos and O.B. Zaslavskii, Entropy of quasiblack holes, Phys. Rev. D 81 (2010) 064012 [arXiv:0904.1741] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  30. J.P. Lemos and O.B. Zaslavskii, Black hole mimickers: regular versus singular behavior, Phys. Rev. D 78 (2008) 024040 [arXiv:0806.0845] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  31. L.C. Barbado, C. Barceló, L.J. Garay and G. Jannes, The trans-Planckian problem as a guiding principle, JHEP 11 (2011) 112 [arXiv:1109.3593]. [INSPIRE].

    Article  ADS  Google Scholar 

  32. C. Barceló, S. Liberati, S. Sonego and M. Visser, Hawking-like radiation does not require a trapped region, Phys. Rev. Lett. 97 (2006) 171301 [gr-qc/0607008]. [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  33. C.R. Stephens, G. ’t Hooft and B.F. Whiting, Black hole evaporation without information loss, Class. Quant. Grav. 11 (1994) 621 [gr-qc/9310006]. [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  34. C. Barceló and M. Visser, Twilight for the energy conditions?, Int. J. Mod. Phys. D 11 (2002) 1553 [gr-qc/0205066]. [INSPIRE].

    ADS  Google Scholar 

  35. M. Visser, Gravitational vacuum polarization. 1: energy conditions in the Hartle-Hawking vacuum, Phys. Rev. D 54 (1996) 5103 [gr-qc/9604007] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  36. M. Visser, Gravitational vacuum polarization. 2: energy conditions in the Boulware vacuum, Phys. Rev. D 54 (1996) 5116 [gr-qc/9604008] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  37. M. Visser, Gravitational vacuum polarization. 3: energy conditions in the (1 + 1) Schwarzschild space-time, Phys. Rev. D 54 (1996) 5123 [gr-qc/9604009] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  38. M. Visser, Gravitational vacuum polarization. 4: energy conditions in the Unruh vacuum, Phys. Rev. D 56 (1997) 936 [gr-qc/9703001] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  39. M. Visser, Gravitational vacuum polarization, in the Proceedings of the Eighth Marcel Grossmann Meeting on General Relativity, Jerusalem Israel, June 1997, Tsvi Piran ed., World Scientific, Singapore (1999) 842 [gr-qc/9710034] [INSPIRE].

  40. H.E. Haber and H. Weldon, Thermodynamics of an ultrarelativistic Bose gas, Phys. Rev. Lett. 46 (1981) 1497 [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matt Visser.

Additional information

ArXiv ePrint: 1109.2710

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abreu, G., Barceló, C. & Visser, M. Entropy bounds in terms of the w parameter. J. High Energ. Phys. 2011, 92 (2011). https://doi.org/10.1007/JHEP12(2011)092

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP12(2011)092

Keywords

Navigation