Skip to main content
Log in

Bremsstrahlung and black hole production from collisions of ultra-boosted particles at non-zero impact parameter

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

The collision of two, gravitationally interacting, point-like particles, boosted to the speed of light, colliding with an impact parameter b is being investigated. The collision takes place in four space-time flat dimensional background. A perturbative scheme is employed and the corrections to the energy momentum tensor and to the metric are computed and closed form formulas are provided. This includes the back-reaction on the metric after the collision. Including such corrections suggests that the tracelessness of the initial stress tensors of the colliding particles is preserved during and after the collision. The necessity for introducing an impact parameter in the perturbative treatment is highlighted and the breaking of the underlying perturbative approach at b = 0 is motivated. In addition, the energy radiated in the form of gravitational bremsstrahlung radiation is discussed while an example from gravitational-waves collision is being studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Aichelburg and R. Sexl, On the Gravitational field of a massless particle, Gen. Rel. Grav. 2 (1971) 303 [INSPIRE].

    Article  ADS  Google Scholar 

  2. P. D’Eath, High Speed Black Hole Encounters and Gravitational Radiation, Phys. Rev. D 18 (1978) 990 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  3. P. D’Eath and P. Payne, Gravitational radiation in high speed black hole collisions. 1. Perturbation treatment of the axisymmetric speed of light collision, Phys. Rev. D 46 (1992) 658 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  4. P. D’Eath and P. Payne, Gravitational radiation in high speed black hole collisions. 2. Reduction to two independent variables and calculation of the second order news function, Phys. Rev. D 46 (1992) 675 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  5. P. D’Eath and P. Payne, Gravitational radiation in high speed black hole collisions. 3. Results and conclusions, Phys. Rev. D 46 (1992) 694 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  6. D. Amati, M. Ciafaloni and G. Veneziano, Effective action and all order gravitational eikonal at Planckian energies, Nucl. Phys. B 403 (1993) 707 [INSPIRE].

    Article  ADS  Google Scholar 

  7. E. Kohlprath and G. Veneziano, Black holes from high-energy beam-beam collisions, JHEP 06 (2002) 057 [gr-qc/0203093] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  8. D. Amati, M. Ciafaloni and G. Veneziano, Towards an S-matrix description of gravitational collapse, JHEP 02 (2008) 049 [arXiv:0712.1209] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  9. G. Veneziano and J. Wosiek, Exploring an S-matrix for gravitational collapse. II. A Momentum space analysis, JHEP 09 (2008) 024 [arXiv:0805.2973] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  10. M. Ciafaloni and D. Colferai, S-matrix and Quantum Tunneling in Gravitational Collapse, JHEP 11 (2008) 047 [arXiv:0807.2117] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  11. D.M. Eardley and S.B. Giddings, Classical black hole production in high-energy collisions, Phys. Rev. D 66 (2002) 044011 [gr-qc/0201034] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  12. D.V. Gal’tsov, G. Kofinas, P. Spirin and T.N. Tomaras, Transplanckian bremsstrahlung and black hole production, Phys. Lett. B 683 (2010) 331 [arXiv:0908.0675] [INSPIRE].

    Article  ADS  Google Scholar 

  13. M.O.P. Sampaio, Radiation from a D-dimensional collision of shock waves: numerical methods, Int. J. Mod. Phys. A 28 (2013) 1340019 [arXiv:1306.0903] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  14. J. Casalderrey-Solana, M.P. Heller, D. Mateos and W. van der Schee, From full stopping to transparency in a holographic model of heavy ion collisions, Phys. Rev. Lett. 111, 181601 (2013) [arXiv:1305.4919] [INSPIRE].

  15. P. Romatschke and J.D. Hogg, Pre-Equilibrium Radial Flow from Central Shock-Wave Collisions in AdS5, JHEP 04 (2013) 048 [arXiv:1301.2635] [INSPIRE].

    Article  ADS  Google Scholar 

  16. O. DeWolfe, S.S. Gubser, C. Rosen and D. Teaney, Heavy ions and string theory, arXiv:1304.7794 [INSPIRE].

  17. B. Wu, On holographic thermalization and gravitational collapse of tachyonic scalar fields, JHEP 04 (2013) 044 [arXiv:1301.3796] [INSPIRE].

    Article  ADS  Google Scholar 

  18. B. Wu, On holographic thermalization and gravitational collapse of massless scalar fields, JHEP 10 (2012) 133 [arXiv:1208.1393] [INSPIRE].

    Article  ADS  Google Scholar 

  19. D. Grumiller and P. Romatschke, On the collision of two shock waves in AdS 5, JHEP 08 (2008) 027 [arXiv:0803.3226] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  20. B. Wu and P. Romatschke, Shock wave collisions in AdS5: approximate numerical solutions, Int. J. Mod. Phys. C 22 (2011) 1317 [arXiv:1108.3715] [INSPIRE].

    Article  ADS  Google Scholar 

  21. F. Coelho, C. Herdeiro, C. Rebelo and M. Sampaio, Radiation from a D-dimensional collision of shock waves: an insight allowed by the D parameter, arXiv:1301.1073 [INSPIRE].

  22. W. van der Schee, P. Romatschke and S. Pratt, A fully dynamical simulation of central nuclear collisions, arXiv:1307.2539 [INSPIRE].

  23. F.S. Coelho, C. Herdeiro, C. Rebelo and M. Sampaio, Radiation from a D-dimensional collision of shock waves: higher order set up and perturbation theory validity, Phys. Rev. D 87 (2013) 084034 [arXiv:1206.5839] [INSPIRE].

    ADS  Google Scholar 

  24. F.S. Coelho, C. Herdeiro and M.O. Sampaio, Radiation from a D-dimensional collision of shock waves: a remarkably simple fit formula, Phys. Rev. Lett. 108 (2012) 181102 [arXiv:1203.5355] [INSPIRE].

    Article  ADS  Google Scholar 

  25. C. Herdeiro, M.O. Sampaio and C. Rebelo, Radiation from a D-dimensional collision of shock waves: First order perturbation theory, JHEP 07 (2011) 121 [arXiv:1105.2298] [INSPIRE].

    Article  ADS  Google Scholar 

  26. A. Taliotis, Heavy Ion Collisions with Transverse Dynamics from Evolving AdS Geometries, JHEP 09 (2010) 102 [arXiv:1004.3500] [INSPIRE].

    Article  ADS  Google Scholar 

  27. S.S. Gubser, Symmetry constraints on generalizations of Bjorken flow, Phys. Rev. D 82 (2010) 085027 [arXiv:1006.0006] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  28. A. Taliotis, Extra dimensions, black holes and fireballs at the LHC, JHEP 05 (2013) 034 [arXiv:1212.0528] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  29. J.L. Albacete, Y.V. Kovchegov and A. Taliotis, Asymmetric Collision of Two Shock Waves in AdS 5, JHEP 05 (2009) 060 [arXiv:0902.3046] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  30. J.L. Albacete, Y.V. Kovchegov and A. Taliotis, Modeling Heavy Ion Collisions in AdS/CFT, JHEP 07 (2008) 100 [arXiv:0805.2927] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  31. A. Papapetrou, Lectures on General Relativity, First Edition, D. Reidel Publishing Company (1974).

  32. Y.V. Kovchegov and S. Lin, Toward Thermalization in Heavy Ion Collisions at Strong Coupling, JHEP 03 (2010) 057 [arXiv:0911.4707] [INSPIRE].

    Article  ADS  Google Scholar 

  33. A. Taliotis, Black Topologies Production in Extra Dimensions, Phys. Rev. D 86 (2012) 064034 [arXiv:1204.0778] [INSPIRE].

    ADS  Google Scholar 

  34. Y. Constantinou, D. Gal’tsov, P. Spirin and T.N. Tomaras, Scalar Bremsstrahlung in Gravity-Mediated Ultrarelativistic Collisions, JHEP 11 (2011) 118 [arXiv:1106.3509] [INSPIRE].

    Article  ADS  Google Scholar 

  35. D.V. Galtsov, G. Kofinas, P. Spirin and T.N. Tomaras, Classical ultrarelativistic bremsstrahlung in extra dimensions, JHEP 05 (2010) 055 [arXiv:1003.2982] [INSPIRE].

    Article  ADS  Google Scholar 

  36. D. Gal’tsov, P. Spirin and T.N. Tomaras, Gravitational bremsstrahlung in ultra-planckian collisions, JHEP 01 (2013) 087 [arXiv:1210.6976] [INSPIRE].

    Article  ADS  Google Scholar 

  37. S. Weinberg, Infrared photons and gravitons, Phys. Rev. 140 (1965) B516.

    Article  MathSciNet  ADS  Google Scholar 

  38. Y.V. Kovchegov, Can thermalization in heavy ion collisions be described by QCD diagrams?, Nucl. Phys. A 762 (2005) 298 [hep-ph/0503038] [INSPIRE].

    Article  ADS  Google Scholar 

  39. Y.V. Kovchegov, Isotropization and thermalization in heavy ion collisions, Nucl. Phys. A 774 (2006) 869 [hep-ph/0510232] [INSPIRE].

    Article  ADS  Google Scholar 

  40. W.E. East and F. Pretorius, Ultrarelativistic black hole formation, Phys. Rev. Lett. 110 (2013) 101101 [arXiv:1210.0443] [INSPIRE].

    Article  ADS  Google Scholar 

  41. S.S. Gubser, S.S. Pufu and A. Yarom, Entropy production in collisions of gravitational shock waves and of heavy ions, Phys. Rev. D 78 (2008) 066014 [arXiv:0805.1551] [INSPIRE].

    ADS  Google Scholar 

  42. I. Arefeva, A. Bagrov and E. Pozdeeva, Holographic phase diagram of quark-gluon plasma formed in heavy-ions collisions, JHEP 05 (2012) 117 [arXiv:1201.6542] [INSPIRE].

    Article  ADS  Google Scholar 

  43. A. Duenas-Vidal and M.A. Vazquez-Mozo, A Note on the Collision of Reissner-Nordström Gravitational Shock Waves in AdS, Phys. Lett. B 713 (2012) 500 [arXiv:1203.1046] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  44. E. Kiritsis and A. Taliotis, Multiplicities from black-hole formation in heavy-ion collisions, JHEP 04 (2012) 065 [arXiv:1111.1931] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Constantinou.

Additional information

ArXiv ePrint: 1308.2544v1

Rights and permissions

Reprints and permissions

About this article

Cite this article

Constantinou, Y., Taliotis, A. Bremsstrahlung and black hole production from collisions of ultra-boosted particles at non-zero impact parameter. J. High Energ. Phys. 2013, 175 (2013). https://doi.org/10.1007/JHEP11(2013)175

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP11(2013)175

Keywords

Navigation