Skip to main content
Log in

Fast scramblers and ultrametric black hole horizons

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We propose that fast scrambling on finite-entropy stretched horizons can be modeled by a diffusion process on an effective ultrametric geometry. A scrambling time scaling logarithmically with the entropy is obtained when the elementary transition rates saturate causality bounds on the stretched horizon. The so-defined ultrametric diffusion becomes unstable in the infinite-entropy limit. A formally regularized version can be shown to follow a particular case of the Kohlrausch law.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Damour, Black Hole Eddy Currents, Phys. Rev. D 18 (1978) 3598 [INSPIRE].

    ADS  Google Scholar 

  2. K.S. Thorne, R.H. Price and D.A. Macdonald, Black Holes: The Membrane Paradigm, Yale University Press, New Haven, U.S.A. (1986) pg. 367.

    Google Scholar 

  3. L. Susskind and J. Lindesay, An introduction to black holes, information and the string theory revolution: The holographic universe, World Scientific, Hackensack, U.S.A. (2005) pg. 183.

    Google Scholar 

  4. G. ’t Hooft, On the Quantum Structure of a Black Hole, Nucl. Phys. B 256 (1985) 727 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  5. P. Hayden and J. Preskill, Black holes as mirrors: Quantum information in random subsystems, JHEP 09 (2007) 120 [arXiv:0708.4025] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  6. Y. Sekino and L. Susskind, Fast Scramblers, JHEP 10 (2008) 065 [arXiv:0808.2096] [INSPIRE].

    Article  ADS  Google Scholar 

  7. L. Susskind, Addendum to Fast Scramblers, arXiv:1101.6048 [INSPIRE].

  8. J.L. Barbon and J.M. Magan, Fast Scramblers Of Small Size, JHEP 10 (2011) 035 [arXiv:1106.4786] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  9. J.L. Barbon and J.M. Magan, Fast Scramblers, Horizons and Expander Graphs, JHEP 08 (2012) 016 [arXiv:1204.6435] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  10. S. Hoory, N. Linial and A. Widgerson, Expander graphs and their applications, Bull. Am. Math. Soc. 43 (2006) 439.

    Article  MATH  Google Scholar 

  11. A. Lubotzky, Expander Graphs in Pure and Applied Mathematics, arXiv:1105.2389.

  12. J.L. Barbon and J.M. Magan, Chaotic Fast Scrambling At Black Holes, Phys. Rev. D 84 (2011) 106012 [arXiv:1105.2581] [INSPIRE].

    ADS  Google Scholar 

  13. N. Lashkari, D. Stanford, M. Hastings, T. Osborne and P. Hayden, Towards the Fast Scrambling Conjecture, JHEP 04 (2013) 022 [arXiv:1111.6580] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  14. C. Asplund, D. Berenstein and D. Trancanelli, Evidence for fast thermalization in the plane-wave matrix model, Phys. Rev. Lett. 107 (2011) 171602 [arXiv:1104.5469] [INSPIRE].

    Article  ADS  Google Scholar 

  15. C.T. Asplund, D. Berenstein and E. Dzienkowski, Large-N classical dynamics of holographic matrix models, Phys. Rev. D 87 (2013) 084044 [arXiv:1211.3425] [INSPIRE].

    ADS  Google Scholar 

  16. M. Edalati, W. Fischler, J.F. Pedraza and W. Tangarife Garcia, Fast Scramblers and Non-commutative Gauge Theories, JHEP 07 (2012) 043 [arXiv:1204.5748] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  17. L. Brady and V. Sahakian, Scrambling with Matrix Black Holes, Phys. Rev. D 88 (2013) 046003 [arXiv:1306.5200] [INSPIRE].

    ADS  Google Scholar 

  18. S.H. Shenker and D. Stanford, Black holes and the butterfly effect, arXiv:1306.0622 [INSPIRE].

  19. M. Axenides, E. Floratos and S. Nicolis, Modular discretization of the AdS2/CFT1 Holography, arXiv:1306.5670 [INSPIRE].

  20. G. Dvali, D. Flassig, C. Gomez, A. Pritzel and N. Wintergerst, Scrambling in the Black Hole Portrait, arXiv:1307.3458 [INSPIRE].

  21. A. Zabrodin, Nonarchimedean Strings and Bruhat-tits Trees, Commun. Math. Phys. 123 (1989) 463 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. R. Mosseri and J.F. Sadoc, The Bethe lattice: a regular tiling of the hyperbolic plane, J. Physique Lett. 43 (1982) 249.

    Article  Google Scholar 

  23. B. Söderberg, Bethe Lattices in Hyperbolic Space, Phys. Rev. E 47 (1993) 4582.

    ADS  Google Scholar 

  24. R. Rammal, G. Toulouse and M. Virasoro, Ultrametricity for physicists, Rev. Mod. Phys. 58 (1986) 765 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  25. A.T. Ogielski and D.L. Stein, Dynamics on Ultrametric Spaces, Phys. Rev. Lett. 55 (1985) 1634.

    Article  MathSciNet  ADS  Google Scholar 

  26. G. Paladin, M. Mézard and C. de Dominicis, Diffusion in an ultrametric space: a simple case, J. Physique Lett. 46 (1985) 985.

    Article  Google Scholar 

  27. C. Bachas and B. Huberman, Complexity and Ultradiffusion, Phys. Rev. Lett. 57 (1986) 1965

    Article  MathSciNet  ADS  Google Scholar 

  28. C. Bachas and B. Huberman, Complexity and Ultradiffusion, J. Phys. A 20 (1987) 4995 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José L. F. Barbón.

Additional information

ArXiv ePrint: 1306.3873

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barbón, J.L.F., Magán, J.M. Fast scramblers and ultrametric black hole horizons. J. High Energ. Phys. 2013, 163 (2013). https://doi.org/10.1007/JHEP11(2013)163

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP11(2013)163

Keywords

Navigation