Skip to main content
Log in

Axion-induced birefringence effects in laser driven nonlinear vacuum interaction

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

The propagation of a probe electromagnetic field through a counterpropagating strong plane wave is investigated. The effects of the electromagnetic field-(pseudo)scalar axion field interaction and of the self-interaction of the electromagnetic field mediated by virtual electron-positron pairs in the effective Lagrangian approach are included. First, we show that if the strong field is circularly polarized, contrary to the leading-order non-linear QED effects, the axion-photon interaction induces a chiral-like birefringence and a dichroism in the vacuum. The latter effect is explained by evoking the conservation of the total angular momentum along the common propagation direction of probe and the strong wave, which allows for real axion production only for probe and strong fields with the same elicity. Moreover, in the case of ultra-short strong pulses, it is shown that the absorption coefficients of probe photons depend on the form of the pulse and, in particular, on the carrier-envelope phase of the strong beam. The present results can be exploited experimentally to isolate nonlinear vacuum effects stemming from light-axion interaction, especially at upcoming ultra-strong laser facilities, where stringent constraints on the axion-photon coupling constant are in principle provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ATLAS collaboration, Search for the Standard Model Higgs boson in the diphoton decay channel with 4.9 fb −1 of pp collisions at \( \sqrt{s}=7 \) TeV with ATLAS, Phys. Rev. Lett. 108 (2012) 111803 [arXiv:1202.1414] [INSPIRE].

    Article  ADS  Google Scholar 

  2. ATLAS collaboration, Search for the Standard Model Higgs boson in the decay channel HZZ(*) → 4ℓ with 4.8 fb −1 of pp collision data at \( \sqrt{s}=7 \) TeV with ATLAS, Phys. Lett. B 710 (2012) 383 [arXiv:1202.1415] [INSPIRE].

    ADS  Google Scholar 

  3. CMS collaboration, Search for the standard model Higgs boson decaying into two photons in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Lett. B 710 (2012) 403 [arXiv:1202.1487] [INSPIRE].

    ADS  Google Scholar 

  4. CMS collaboration, Search for the standard model Higgs boson in the decay channel H to ZZ to 4 leptons in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Rev. Lett. 108 (2012) 111804 [arXiv:1202.1997] [INSPIRE].

    Article  ADS  Google Scholar 

  5. J. Ellis and T. You, Updated Global Analysis of Higgs Couplings, JHEP 06 (2013) 103 [arXiv:1303.3879] [INSPIRE].

    Article  ADS  Google Scholar 

  6. R. Peccei and H.R. Quinn, CP Conservation in the Presence of Instantons, Phys. Rev. Lett. 38 (1977) 1440 [INSPIRE].

    Article  ADS  Google Scholar 

  7. F. Wilczek, Problem of Strong p and t Invariance in the Presence of Instantons, Phys. Rev. Lett. 40 (1978) 279 [INSPIRE].

    Article  ADS  Google Scholar 

  8. S. Weinberg, A New Light Boson?, Phys. Rev. Lett. 40 (1978) 223 [INSPIRE].

    Article  ADS  Google Scholar 

  9. E. Witten, Some Properties of O(32) Superstrings, Phys. Lett. B 149 (1984) 351.

    Article  MathSciNet  ADS  Google Scholar 

  10. P. Svrček and E. Witten, Axions In String Theory, JHEP 06 (2006) 051 [hep-th/0605206] [INSPIRE].

    Article  ADS  Google Scholar 

  11. S.J. Asztalos et al., Experimental constraints on the axion dark matter halo density, Astrophys. J. 571 (2002) L27 [astro-ph/0104200] [INSPIRE].

    Article  ADS  Google Scholar 

  12. S. Lamoreaux, The first axion?, Nature 44 (2006) 31.

    Article  ADS  Google Scholar 

  13. J. Jaeckel and A. Ringwald, The Low-Energy Frontier of Particle Physics, Ann. Rev. Nucl. Part. Sci. 60 (2010) 405 [arXiv:1002.0329] [INSPIRE].

    Article  ADS  Google Scholar 

  14. J. Hewett et al., Fundamental Physics at the Intensity Frontier, arXiv:1205.2671 [INSPIRE].

  15. M. Arik et al., Search for Sub-eV Mass Solar Axions by the CERN Axion Solar Telescope with 3He Buffer Gas, Phys. Rev. Lett. 107 (2011) 261302 [arXiv:1106.3919] [INSPIRE].

    Article  ADS  Google Scholar 

  16. G.G. Raffelt, Astrophysical axion bounds diminished by screening effects, Phys. Rev. D 33 (1986) 897 [INSPIRE].

    ADS  Google Scholar 

  17. G.G. Raffelt, Particle physics from stars, Ann. Rev. Nucl. Part. Sci. 49 (1999) 163 [hep-ph/9903472] [INSPIRE].

    Article  ADS  Google Scholar 

  18. G.G. Raffelt, Astrophysical axion bounds, Lect. Notes Phys. 741 (2008) 51.

    Article  ADS  Google Scholar 

  19. J. Jaeckel, E. Masso, J. Redondo, A. Ringwald and F. Takahashi, The Need for purely laboratory-based axion-like particle searches, Phys. Rev. D 75 (2007) 013004 [hep-ph/0610203] [INSPIRE].

    ADS  Google Scholar 

  20. H. Gies, External fields as a probe for fundamental physics, J. Phys. A 41 (2008) 164039 [arXiv:0711.1337] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  21. L. Maiani, R. Petronzio and E. Zavattini, Effects of Nearly Massless, Spin Zero Particles on Light Propagation in a Magnetic Field, Phys. Lett. B 175 (1986) 359 [INSPIRE].

    Article  ADS  Google Scholar 

  22. G. Raffelt and L. Stodolsky, Mixing of the Photon with Low Mass Particles, Phys. Rev. D 37 (1988) 1237 [INSPIRE].

    ADS  Google Scholar 

  23. E. Gabrielli et al., Photon propagation in magnetic and electric fields with scalar/pseudoscalar couplings: A New look?, Phys. Rev. D 74 (2006) 073002 [hep-ph/0604143] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  24. C. Biggio et al., Mixing of photons with massive spin-two particles in a magnetic field, Phys. Rev. 79 (2009) 015012 [hep-ph/0604062] [INSPIRE].

    ADS  Google Scholar 

  25. I. Affleck, Photon propagation in a plane wave field, J. Phys. A 21 (1988) 693 [INSPIRE].

    ADS  Google Scholar 

  26. W. Dittrich and H. Gies, Probing the quantum vacuum, Springer, Heidelberg Germany (2000).

    Google Scholar 

  27. S.L. Adler, Photon splitting and photon dispersion in a strong magnetic field, Annals Phys. 67 (1971) 599 [INSPIRE].

    Article  ADS  Google Scholar 

  28. A.E. Shabad, Interaction of electromagnetic radiation with supercritical magnetic field, Sov. Phys. JETP 98 (2004) 186.

    Article  ADS  Google Scholar 

  29. A.E. Shabad and V.V. Usov, Effective Lagrangian in nonlinear electrodynamics and its properties of causality and unitarity, Phys. Rev. D 83 (2011) 105006 [arXiv:1101.2343] [INSPIRE].

    ADS  Google Scholar 

  30. S. Villalba-Chávez and A.E. Shabad, QED with external field: Hamiltonian treatment for anisotropic medium formed by the Lorentz-non-invariant vacuum, Phys. Rev. D 86 (2012) 105040 [arXiv:1206.4491] [INSPIRE].

    ADS  Google Scholar 

  31. K. Van Bibber, N. Dagdeviren, S. Koonin, A. Kerman and H. Nelson, Proposed experiment to produce and detect light pseudoscalars, Phys. Rev. Lett. 59 (1987) 759 [INSPIRE].

    Article  ADS  Google Scholar 

  32. S.L. Adler, J. Gamboa, F. Mendez and J. Lopez-Sarrion, Axions andLight Shining Through a Wall: A Detailed Theoretical Analysis, Annals Phys. 323 (2008) 2851 [arXiv:0801.4739] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. P. Arias, J. Jaeckel, J. Redondo and A. Ringwald, Optimizing Light-Shining-through-a-Wall Experiments for Axion and other WISP Searches, Phys. Rev. D 82 (2010) 115018 [arXiv:1009.4875] [INSPIRE].

    ADS  Google Scholar 

  34. J. Redondo and A. Ringwald, Light shining through walls, Contemp. Phys. 52 (2011) 211 [arXiv:1011.3741] [INSPIRE].

    Article  ADS  Google Scholar 

  35. R. Cameron et al., Search for nearly massless, weakly coupled particles by optical techniques, Phys. Rev. D 47 (1993) 3707 [INSPIRE].

    ADS  Google Scholar 

  36. PVLAS collaboration, E. Zavattini et al., New PVLAS results and limits on magnetically induced optical rotation and ellipticity in vacuum, Phys. Rev. D 77 (2008) 032006 [arXiv:0706.3419] [INSPIRE].

    ADS  Google Scholar 

  37. R. Battesti et al., The BMV experiment: a novel apparatus to study the propagation of light in a transverse magnetic field, Eur. Phys. J. D 46 (2008) 323.

    ADS  Google Scholar 

  38. S.-J. Chen, H.-H. Mei and W.-T. Ni, Q&A experiment to search for vacuum dichroism, pseudoscalar-photon interaction and millicharged fermions, Mod. Phys. Lett. A 22 (2007) 2815 [hep-ex/0611050] [INSPIRE].

    Article  ADS  Google Scholar 

  39. K. Ehret et al., New ALPS Results on Hidden-Sector Lightweights, Phys. Lett. B 689 (2010) 149 [arXiv:1004.1313] [INSPIRE].

    Article  ADS  Google Scholar 

  40. ALPS collaboration, K. Ehret et al., Resonant laser power build-up in ALPS: ALight-shining-through-wallsexperiment, Nucl. Instrum. Meth. A 612 (2009) 83 [arXiv:0905.4159] [INSPIRE].

    Article  ADS  Google Scholar 

  41. GammeV (T-969) collaboration, A.S. Chou et al., Search for axion-like particles using a variable baseline photon regeneration technique, Phys. Rev. Lett. 100 (2008) 080402 [arXiv:0710.3783] [INSPIRE].

    Article  ADS  Google Scholar 

  42. J.H. Steffen and A. Upadhye, The GammeV suite of experimental searches for axion-like particles, Mod. Phys. Lett. A 24 (2009) 2053 [arXiv:0908.1529] [INSPIRE].

    Article  ADS  Google Scholar 

  43. A. Afanasev et al., New Experimental limit on Optical Photon Coupling to Neutral, Scalar Bosons, Phys. Rev. Lett. 101 (2008) 120401 [arXiv:0806.2631] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  44. A. Afanasev, O. Baker and K. McFarlane, Production and detection of very light spin-zero bosons at optical frequencies, hep-ph/0605250 [INSPIRE].

  45. OSQAR collaboration, P. Pugnat et al., First results from the OSQAR photon regeneration experiment: No light shining through a wall, Phys. Rev. D 78 (2008) 092003 [arXiv:0712.3362] [INSPIRE].

    ADS  Google Scholar 

  46. C. Robilliard et al., No light shining through a wall, Phys. Rev. Lett. 99 (2007) 190403 [arXiv:0707.1296] [INSPIRE].

    Article  ADS  Google Scholar 

  47. M. Fouche et al., Search for photon oscillations into massive particles, Phys. Rev. D 78 (2008) 032013 [arXiv:0808.2800] [INSPIRE].

    ADS  Google Scholar 

  48. http://www.extreme-light-infrastructure.eu.

  49. http://www.xcels.iapras.ru/.

  50. J.T. Mendonça, Axion excitation by intense laser fields, Eurphys. Lett. 79 (2007) 21001 [hep-ph/0702091] [INSPIRE].

    Article  ADS  Google Scholar 

  51. H. Gies, Strong laser fields as a probe for fundamental physics, Eur. Phys. J. D 55 (2009) 311 [arXiv:0812.0668] [INSPIRE].

    ADS  Google Scholar 

  52. B. Dobrich and H. Gies, Axion-like-particle search with high-intensity lasers, JHEP 10 (2010) 022 [arXiv:1006.5579] [INSPIRE].

    Article  ADS  Google Scholar 

  53. B. Dobrich and H. Gies. High-Intensity Probes of Axion-Like Particles, Contributed to 6th Patras Workshop on Axions, WIMPs and WISPs, Zurich, Switzerland, 5-9 Jul 2010.

  54. F. Hebenstreit, R. Alkofer, G.V. Dunne and H. Gies, Momentum signatures for Schwinger pair production in short laser pulses with sub-cycle structure, Phys. Rev. Lett. 102 (2009) 150404 [arXiv:0901.2631] [INSPIRE].

    Article  ADS  Google Scholar 

  55. M. Ruf, G.R. Mocken, C. Muller, K.Z. Hatsagortsyan and C.H. Keitel, Pair production in laser fields oscillating in space and time, Phys. Rev. Lett. 102 (2009) 080402 [arXiv:0810.4047] [INSPIRE].

    Article  ADS  Google Scholar 

  56. G.R. Mocken et al., Nonperturbative multiphoton electron-positron-pair creation in laser fields, Phys. Rev. A 81 (2010) 022122 [INSPIRE].

    Article  ADS  Google Scholar 

  57. A. Di Piazza, A.I. Milstein and C.H. Keitel, Photon splitting in a laser field, Phys. Rev. A 76 (2007) 032103 [arXiv:0704.0695] [INSPIRE].

    Article  ADS  Google Scholar 

  58. A. Di Piazza, K. Hatsagortsyan and C. Keitel, Light diffraction by a strong standing electromagnetic wave, Phys. Rev. Lett. 97 (2006) 083603 [hep-ph/0602039] [INSPIRE].

    Article  ADS  Google Scholar 

  59. B. King, A. Di Piazza and C.H. Keitel, A matterless Double Slit, Nature 4 (2010) 92 [arXiv:1301.7038] [INSPIRE].

    Google Scholar 

  60. B. King, A. Di Piazza and C.H. Keitel, Double-slit vacuum polarization effects in ultraintense laser fields, Phys. Rev. A 82 (2010) 032114.

    Article  ADS  Google Scholar 

  61. T. Heinzl and O. Schroeder, Large orders in strong-field QED, J. Phys. A 39 (2006) 11623 [hep-th/0605130] [INSPIRE].

    ADS  Google Scholar 

  62. T. Heinzl et al., On the observation of vacuum birefringence, Opt. Comm. 267 (2006) 318.

    Article  ADS  Google Scholar 

  63. A. Dadi and C. Muller, Phenomenological model of multiphoto-production of charged pion pairs on the proton, Phys. Lett. B 697 (2011) 142 [arXiv:1009.0621] [INSPIRE].

    Article  ADS  Google Scholar 

  64. S.J. Müller, C.H. Keitel and C. Müller, Higgs Boson Creation in Laser-Boosted Lepton Collisions, arXiv:1307.6751 [INSPIRE].

  65. A. Di Piazza, C. Muller, K. Hatsagortsyan and C. Keitel, Extremely high-intensity laser interactions with fundamental quantum systems, Rev. Mod. Phys. 84 (2012) 1177 [arXiv:1111.3886] [INSPIRE].

    Article  ADS  Google Scholar 

  66. W. Becker and H. Mitter, Vacuum polarization in laser fields, J. Phys. A 8 (1975) 1638.

    ADS  Google Scholar 

  67. V.N. Baier, A.I. Mil’shtein and V.M. Strakhovenko, Interaction between a photon and an intense electromagnetic wave, Zh. Eksp. Teo. Fiz. 69 (1975) 1893 [Sov. Phys. JETP 42 (1976) 961].

  68. S. Villalba-Chávez and C. Müller, Searching for minicharged particles via birefringence, dichroism and Raman spectroscopy of the vacuum polarized by a high-intensity laser wave, Annals Phys. 339 (2013) 460 [arXiv:1306.6456] [INSPIRE].

    Article  ADS  Google Scholar 

  69. V. Yanovsky et al., Nanoscale separation of molecular species based on their rotational mobility, Opt. Express 16 (2008) 2109.

    Article  ADS  Google Scholar 

  70. A. Ilderton and G. Torgrimsson, Scattering in plane-wave backgrounds: infra-red effects and pole structure, Phys. Rev. D 87 (2013) 085040 [arXiv:1210.6840] [INSPIRE].

    ADS  Google Scholar 

  71. http://www.lle.rochester.edu.

  72. K. Muroo et al., Measurement of the Cotton-Mouton constants of noble atoms, J. Opt. Soc. Am. B 20 (2003) 2249.

    Article  ADS  Google Scholar 

  73. M. Dine, W. Fischler and M. Srednicki, A Simple Solution to the Strong CP Problem with a Harmless Axion, Phys. Lett. B 104 (1981) 199 [INSPIRE].

    Article  ADS  Google Scholar 

  74. A. Zhitnitsky, On Possible Suppression of the Axion Hadron Interactions (in Russian), Sov. J. Nucl. Phys. 31 (1980) 260 [Yad. Fiz. 31 (1980) 497] [INSPIRE].

  75. J.E. Kim, Weak Interaction Singlet and Strong CP Invariance, Phys. Rev. Lett. 43 (1979) 103 [INSPIRE].

    Article  ADS  Google Scholar 

  76. M.A. Shifman, A. Vainshtein and V.I. Zakharov, Can Confinement Ensure Natural CP Invariance of Strong Interactions?, Nucl. Phys. B 166 (1980) 493 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  77. S. Villalba-Chávez, Laser-driven search of axion-like particles including vacuum polarization effects, arXiv:1308.4033 [INSPIRE].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Selym Villalba-Chávez.

Additional information

ArXiv ePrint: 1307.7935

Rights and permissions

Reprints and permissions

About this article

Cite this article

Villalba-Chávez, S., Di Piazza, A. Axion-induced birefringence effects in laser driven nonlinear vacuum interaction. J. High Energ. Phys. 2013, 136 (2013). https://doi.org/10.1007/JHEP11(2013)136

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP11(2013)136

Keywords

Navigation