Skip to main content
Log in

Correlation function of circular Wilson loops at strong coupling

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We study the correlation function of two circular Wilson loops at strong coupling in \( \mathcal{N} \) = 4 super Yang-Mills theory. Using the AdS/CFT correspondence, the problem maps to finding the minimal surface between two circles defined on the boundary of AdS, and the fluctuations around the classical solution in AdS5 × S 5. At the classical level, we derive the string solution in ℍ3 ×S 1 explicitly, and focus on properties such as stability and phase transition. Furthermore, a computation of the associated algebraic curve is given. At the quantum level, the one-loop partition function is constructed by introducing quadratic bosonic and fermionic fluctuations around the classical solution, embedded in AdS5 × S 5. We find an analytic, formal expression for the partition function in terms of an infinite product by employing the Gel’fand-Yaglom method and supersymmetric regularization. We regulate the expression and evaluate the partition function numerically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [INSPIRE].

  2. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].

    MathSciNet  ADS  MATH  Google Scholar 

  3. S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  4. S.-J. Rey and J.-T. Yee, Macroscopic strings as heavy quarks in large-N gauge theory and anti-de Sitter supergravity, Eur. Phys. J. C 22 (2001) 379 [hep-th/9803001] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  5. J.M. Maldacena, Wilson loops in large-N field theories, Phys. Rev. Lett. 80 (1998) 4859 [hep-th/9803002] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. N. Beisert et al., Review of AdS/CFT integrability: an overview, Lett. Math. Phys. 99 (2012) 3 [arXiv:1012.3982] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  7. V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops, Commun. Math. Phys. 313 (2012) 71 [arXiv:0712.2824] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. K. Zarembo, Wilson loop correlator in the AdS/CFT correspondence, Phys. Lett. B 459 (1999) 527 [hep-th/9904149] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  9. P. Olesen and K. Zarembo, Phase transition in Wilson loop correlator from AdS/CFT correspondence, hep-th/0009210 [INSPIRE].

  10. N. Drukker and B. Fiol, On the integrability of Wilson loops in AdS 5 × S 5 : Some periodic ansatze, JHEP 01 (2006) 056 [hep-th/0506058] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  11. D.J. Gross and H. Ooguri, Aspects of large-N gauge theory dynamics as seen by string theory, Phys. Rev. D 58 (1998) 106002 [hep-th/9805129] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  12. D.E. Berenstein, R. Corrado, W. Fischler and J.M. Maldacena, The operator product expansion for Wilson loops and surfaces in the large-N limit, Phys. Rev. D 59 (1999) 105023 [hep-th/9809188] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  13. N. Drukker, D.J. Gross and A.A. Tseytlin, Green-Schwarz string in AdS 5 × S 5 : Semiclassical partition function, JHEP 04 (2000) 021 [hep-th/0001204] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  14. M. Kruczenski and A. Tirziu, Matching the circular Wilson loop with dual open string solution at 1-loop in strong coupling, JHEP 05 (2008) 064 [arXiv:0803.0315] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  15. S.-x. Chu, D. Hou and H.-c. Ren, The subleading term of the strong coupling expansion of the heavy-quark potential in a N = 4 super Yang-Mills vacuum, JHEP 08 (2009) 004 [arXiv:0905.1874] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  16. V. Forini, Quark-antiquark potential in AdS at one loop, JHEP 11 (2010) 079 [arXiv:1009.3939] [INSPIRE].

    Article  ADS  Google Scholar 

  17. N. Drukker and V. Forini, Generalized quark-antiquark potential at weak and strong coupling, JHEP 06 (2011) 131 [arXiv:1105.5144] [INSPIRE].

    Article  ADS  Google Scholar 

  18. M. Beccaria, G. Dunne, V. Forini, M. Pawellek and A. Tseytlin, Exact computation of one-loop correction to energy of spinning folded string in AdS 5 × S 5, J. Phys. A 43 (2010) 165402 [arXiv:1001.4018] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  19. C. Kristjansen and Y. Makeenko, More about one-loop effective action of open superstring in AdS 5 × S 5, JHEP 09 (2012) 053 [arXiv:1206.5660] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  20. J. Plefka and M. Staudacher, Two loops to two loops in N = 4 supersymmetric Yang-Mills theory, JHEP 09 (2001) 031 [hep-th/0108182] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  21. G. Arutyunov, J. Plefka and M. Staudacher, Limiting geometries of two circular Maldacena-Wilson loop operators, JHEP 12 (2001) 014 [hep-th/0111290] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  22. V. Kazakov, A. Marshakov, J. Minahan and K. Zarembo, Classical/quantum integrability in AdS/CFT, JHEP 05 (2004) 024 [hep-th/0402207] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  23. R.A. Janik and P. Laskos-Grabowski, Surprises in the AdS algebraic curve constructions: Wilson loops and correlation functions, Nucl. Phys. B 861 (2012) 361 [arXiv:1203.4246] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  24. A. Dekel, Algebraic curves for factorized string solutions, JHEP 04 (2013) 119 [arXiv:1302.0555] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  25. N. Drukker, D.J. Gross and H. Ooguri, Wilson loops and minimal surfaces, Phys. Rev. D 60 (1999) 125006 [hep-th/9904191] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  26. A.M. Polyakov and V.S. Rychkov, Gauge field strings duality and the loop equation, Nucl. Phys. B 581 (2000) 116 [hep-th/0002106] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  27. V. Mikhaylov, On the fermionic frequencies of circular strings, J. Phys. A 43 (2010) 335401 [arXiv:1002.1831] [INSPIRE].

    MathSciNet  Google Scholar 

  28. N. Gromov and P. Vieira, The AdS 5 × S 5 superstring quantum spectrum from the algebraic curve, Nucl. Phys. B 789 (2008) 175 [hep-th/0703191] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  29. A. Dekel and Y. Oz, Integrability of Green-Schwarz σ-models with boundaries, JHEP 08 (2011) 004 [arXiv:1106.3446] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  30. A. Armoni, M. Piai and A. Teimouri, Correlators of Circular Wilson Loops from Holography, Phys. Rev. D 88 (2013) 066008 [arXiv:1307.7773] [INSPIRE].

    ADS  Google Scholar 

  31. N. Drukker and B. Fiol, All-genus calculation of Wilson loops using D-branes, JHEP 02 (2005) 010 [hep-th/0501109] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  32. S. Yamaguchi, Wilson loops of anti-symmetric representation and D5-branes, JHEP 05 (2006) 037 [hep-th/0603208] [INSPIRE].

    Article  ADS  Google Scholar 

  33. S.A. Hartnoll and S.P. Kumar, Multiply wound Polyakov loops at strong coupling, Phys. Rev. D 74 (2006) 026001 [hep-th/0603190] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  34. J. Gomis and F. Passerini, Holographic Wilson loops, JHEP 08 (2006) 074 [hep-th/0604007] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  35. J. Gomis and F. Passerini, Wilson loops as D3-branes, JHEP 01 (2007) 097 [hep-th/0612022] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  36. A. Faraggi and L.A. Pando Zayas, The spectrum of excitations of holographic Wilson loops, JHEP 05 (2011) 018 [arXiv:1101.5145] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  37. A. Faraggi, W. Mueck and L.A. Pando Zayas, One-loop effective action of the holographic antisymmetric Wilson loop, Phys. Rev. D 85 (2012) 106015 [arXiv:1112.5028] [INSPIRE].

    ADS  Google Scholar 

  38. M. Abramowitz and I. Stegun, Handbook of Mathematical Functions, fifth edition, Dover, New York U.S.A. (1964).

  39. E.T. Whittaker and G.N. Watson, A Course of Modern Analysis, fourth edition, Cambridge University Press, Cambridge U.K. (1927).

  40. G. Valent, Heun functions versus elliptic functions, math-ph/0512006.

  41. A.J. McKane and M.B. Tarlie, Regularization of functional determinants using boundary perturbations, J. Phys. A 28 (1995) 6931 [cond-mat/9509126].

    MathSciNet  ADS  Google Scholar 

  42. G.V. Dunne, Functional determinants in quantum field theory, J. Phys. A 41 (2008) 304006 [arXiv:0711.1178] [INSPIRE].

    MathSciNet  Google Scholar 

  43. K. Kirsten and A.J. McKane, Functional determinants by contour integration methods, Annals Phys. 308 (2003) 502 [math-ph/0305010] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  44. S. Frolov, I. Park and A.A. Tseytlin, On one-loop correction to energy of spinning strings in S 5, Phys. Rev. D 71 (2005) 026006 [hep-th/0408187] [INSPIRE].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Dekel.

Additional information

ArXiv ePrint: 1309.3203

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dekel, A., Klose, T. Correlation function of circular Wilson loops at strong coupling. J. High Energ. Phys. 2013, 117 (2013). https://doi.org/10.1007/JHEP11(2013)117

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP11(2013)117

Keywords

Navigation